```python
# model description
model_spec = "svm_y-effort_x-choiceS"
ycol = "effort"
Xcols = ["choiceS"]
def fit_classifier(X, y, loss="hinge", penalty="l2", cv=5, alpha=0.3):
model = SGDClassifier(loss=loss, penalty=penalty, alpha=alpha)
return cross_val_score(model, X, y, cv=cv).mean()
```
Low overall decoding accuracy (about 60-63%)
```r
> dt_scores[include == 1, mean(score, na.rm = T), by = group]
group V1
1: charity 0.6353201
2: otherperson 0.6260444
3: self 0.6052593
```
Weird correlations
![[Pasted image 20201004221841.png]]