Loss (robust BIC). Lower better. Best model: $drift = b0 + b1 \times \text{drift\_perc\_acc}$ ```r > d0[, .(loss = mean(loss, na.rm = T)), keyby = .(model)] model loss 1: drift_perc_accDR 106.7937 # best model 2: drift_perc_acc 107.3446 3: drift_perc_accDR_concordance 109.6419 ``` ```r > m1 <- lmer(loss ~ model + (1| study/id), data = d0) > summaryh(m1) term results 1: (Intercept) b = 105.94, SE = 4.07, t(7) = 26.03, p < .001, r = 0.99 # model: drift_perc_acc 2: modeldrift_perc_accDR b = −0.46, SE = 0.10, t(2073) = −4.57, p < .001, r = 0.10 # best model (smallest BIC) 3: modeldrift_perc_accDR_concordance b = −0.40, SE = 0.11, t(2073) = −3.70, p < .001, r = 0.08 > summaryh(anova(m1)) term results 1: model F(2, 2073) = 12.03, p < .001 ``` ```r > m2 <- lmer(loss ~ model * platformEC + (1| study/id), data = d0) > summaryh(m2) term results 1: (Intercept) b = 105.90, SE = 4.11, t(6) = 25.79, p < .001, r = 1.00 2: modeldrift_perc_accDR b = −0.41, SE = 0.10, t(2071) = −3.98, p < .001, r = 0.09 3: modeldrift_perc_accDR_concordance b = −0.17, SE = 0.13, t(2071) = −1.37, p = .172, r = 0.03 4: platformEC b = 7.01, SE = 8.21, t(6) = 0.85, p = .426, r = 0.33 5: modeldrift_perc_accDR:platformEC b = −0.34, SE = 0.21, t(2071) = −1.63, p = .103, r = 0.04 6: modeldrift_perc_accDR_concordance:platformEC b = −0.89, SE = 0.25, t(2071) = −3.49, p < .001, r = 0.08 > summaryh(anova(m2)) term results 1: model F(2, 2071) = 7.96, p < .001 2: platformEC F(1, 6) = 0.65, p = .452 3: model:platformEC F(2, 2071) = 6.12, p = .002 ``` ```r > m3 <- lmer(loss ~ model + (1| platform/study/id), data = d0) boundary (singular) fit: see ?isSingular > summaryh(m3) term results 1: (Intercept) b = 105.94, SE = 4.07, t(7) = 26.03, p < .001, r = 0.99 2: modeldrift_perc_accDR b = −0.46, SE = 0.10, t(2073) = −4.57, p < .001, r = 0.10 3: modeldrift_perc_accDR_concordance b = −0.40, SE = 0.11, t(2073) = −3.70, p < .001, r = 0.08 > summaryh(anova(m3)) term results 1: model F(2, 2073) = 12.03, p < .001 ```