# BIC loss ```r > d1[, .(loss = mean(loss, na.rm = T)), keyby = .(model)] model loss 1: drift_perc_acc 110.2713 2: drift_perc_accDR 109.8721 3: drift_perc_accDR_ndt0 443.6314 ``` # Compare BICs ```r > m1 <- lmer(loss ~ model + (1| study/id), data = d1) > summaryh(m1) term results 1: (Intercept) b = 100.69, SE = 9.36, t(10) = 10.76, p < .001, r = 0.96 # perc_acc 2: modeldrift_perc_accDR b = −0.40, SE = 5.29, t(2737) = −0.08, p = .940, r = 0.001 3: modeldrift_perc_accDR_ndt0 b = 336.92, SE = 5.65, t(2745) = 59.65, p < .001, r = 0.75 > m2 <- lmer(loss ~ model + platformZ + (1| study/id), data = d1) > summaryh(m2) term results 1: (Intercept) b = 102.43, SE = 8.33, t(8) = 12.30, p < .001, r = 0.98 2: modeldrift_perc_accDR b = −0.40, SE = 5.29, t(2737) = −0.08, p = .940, r = 0.001 3: modeldrift_perc_accDR_ndt0 b = 336.99, SE = 5.65, t(2739) = 59.68, p < .001, r = 0.75 4: platformZ b = 12.55, SE = 7.60, t(6) = 1.65, p = .151, r = 0.56 > m3 <- lmer(loss ~ model + (1| platform/study/id), data = d1) > summaryh(m3) term results 1: (Intercept) b = 100.16, SE = 13.07, t(1) = 7.66, p = .071, r = 0.99 2: modeldrift_perc_accDR b = −0.40, SE = 5.29, t(2737) = −0.08, p = .940, r = 0.001 3: modeldrift_perc_accDR_ndt0 b = 336.94, SE = 5.65, t(2740) = 59.67, p < .001, r = 0.75 ```