# Observed RTs ~ Likert sharing intentions
```r
# quadratic effect of ratingSquare on rt
> m1a <- lmer(rt ~ ratingC + ratingSquareC + (1 + ratingC + ratingSquareC | study / id), dt1)
> summaryh(m1a)
term results
1: (Intercept) b = 8.27, SE = 0.44, t(5) = 18.93, p < .001, r = 0.99
2: ratingC b = −0.18, SE = 0.11, t(5) = −1.61, p = .165, r = 0.57
3: ratingSquareC b = −4.37, SE = 0.32, t(4) = −13.80, p < .001, r = 0.99
```
![[Pasted image 20220131231642.png]]
![[Pasted image 20220131232747.png]]
# DDM model-predicted RTs ~ Likert sharing intentions
```r
# quadratic effect of ratingSquare on DDM predicted rt
m3 <- lmer(rt_pred ~ ratingC + ratingSquareC + (1 + ratingC + ratingSquareC | study / id), dt3)
> summaryh(m3)
term results
1: (Intercept) b = 7.22, SE = 0.41, t(5) = 17.44, p < .001, r = 0.99
2: ratingC b = 0.09, SE = 0.03, t(5) = 2.76, p = .041, r = 0.78
3: ratingSquareC b = −0.42, SE = 0.06, t(5) = −6.77, p = .001, r = 0.95
```
![[Pasted image 20220131222152.png]]
# Observed RT ~ model-predicted RT for different Likert ratings and studies
- fanning out as RT increases (> 10 s)
- fewer longer RTs to fit model to, hence worse model fit
![[Pasted image 20220131222805.png]]
![[Pasted image 20220131233950.png]]
```r
# correlations
> dt3_avg[, .(r = cor(rt, rt_pred)), keyby = .(rating)]
rating r
1: 0.0 0.9343968
2: 0.2 0.8825916
3: 0.4 0.8758244
4: 0.6 0.8857065
5: 0.8 0.8709037
6: 1.0 0.8761314
> dt3_avg[, .(r = cor(rt, rt_pred)), keyby = .(study, rating)]
study rating r
1: B 0.0 0.9552928
2: B 0.2 0.8704365
3: B 0.4 0.8542955
4: B 0.6 0.8545920
5: B 0.8 0.8510144
6: B 1.0 0.8189048
7: C 0.0 0.9300002
8: C 0.2 0.8985862
9: C 0.4 0.8689930
10: C 0.6 0.8810205
11: C 0.8 0.8437642
12: C 1.0 0.8367263
13: G 0.0 0.9063222
14: G 0.2 0.8645948
15: G 0.4 0.8530465
16: G 0.6 0.8683215
17: G 0.8 0.8548013
18: G 1.0 0.8583102
19: H 0.0 0.9147807
20: H 0.2 0.8676737
21: H 0.4 0.8819867
22: H 0.6 0.8809585
23: H 0.8 0.8761860
24: H 1.0 0.8355558
25: L 0.0 0.9751849
26: L 1.0 0.9577894
27: P 0.0 0.8928729
28: P 0.2 0.8973224
29: P 0.4 0.9025524
30: P 0.6 0.9124544
31: P 0.8 0.8862142
32: P 1.0 0.8517898
study rating r
```
# One study (L) has binary sharing intentions
```r
# mean RT in each study
platform study condition rt choice
1: Lucid G 0 8.491321 0.3847112
2: Lucid G 1 8.798396 0.3522638
3: Lucid L 0 6.979766 0.4609744 # binary
4: Lucid L 1 7.095794 0.4575841 # binary
5: Lucid P 0 5.716850 0.4358538
6: Lucid P 1 5.984047 0.4331498
7: MTurk B 0 8.377431 0.2301779
8: MTurk B 1 8.428912 0.2358963
9: MTurk C 0 7.885660 0.2706938
10: MTurk C 1 8.481407 0.2571657
11: MTurk H 0 6.920213 0.4085294
12: MTurk H 1 6.960239 0.3968796
binary condition rt rating2
1: -0.5 0 7.792818 0.3266990
2: -0.5 1 7.548500 0.3453438
3: 0.5 0 6.979766 0.4609744 # binary
4: 0.5 1 7.095794 0.4575841 # binary
# driftb1 ~ condition
> d[, summaryh(lm(driftb1 ~ conditionEC)), keyby = .(binarized, Platform, study)][order(term)]
binarized Platform study term results
1: -0.5 Lucid G (Intercept) b = 0.05, SE = 0.03, t(710) = 1.98, p = .048, r = 0.07
2: -0.5 Lucid P (Intercept) b = 0.38, SE = 0.08, t(386) = 4.62, p < .001, r = 0.23
3: -0.5 MTurk B (Intercept) b = 0.12, SE = 0.03, t(918) = 4.08, p < .001, r = 0.13
4: -0.5 MTurk C (Intercept) b = 0.17, SE = 0.03, t(981) = 6.64, p < .001, r = 0.21
5: -0.5 MTurk H (Intercept) b = 0.48, SE = 0.03, t(1741) = 15.83, p < .001, r = 0.36
6: 0.5 Lucid L (Intercept) b = 0.49, SE = 0.06, t(590) = 8.43, p < .001, r = 0.33 # binary
7: -0.5 Lucid G conditionEC b = 0.16, SE = 0.05, t(710) = 2.86, p = .004, r = 0.11
8: -0.5 Lucid P conditionEC b = 0.14, SE = 0.16, t(386) = 0.85, p = .394, r = 0.04
9: -0.5 MTurk B conditionEC b = 0.33, SE = 0.06, t(918) = 5.44, p < .001, r = 0.18
10: -0.5 MTurk C conditionEC b = 0.27, SE = 0.05, t(981) = 5.12, p < .001, r = 0.16
11: -0.5 MTurk H conditionEC b = 0.03, SE = 0.06, t(1741) = 0.42, p = .673, r = 0.01
12: 0.5 Lucid L conditionEC b = 0.25, SE = 0.12, t(590) = 2.18, p = .029, r = 0.09 # binary
# boundary ~ condition
> d[, summaryh(lm(B ~ conditionEC)), keyby = .(binarized, Platform, study)][order(term)]
binarized Platform study term results
1: -0.5 Lucid G (Intercept) b = 3.42, SE = 0.12, t(710) = 29.60, p < .001, r = 0.74
2: -0.5 Lucid P (Intercept) b = 2.62, SE = 0.07, t(386) = 37.57, p < .001, r = 0.89
3: -0.5 MTurk B (Intercept) b = 3.45, SE = 0.08, t(918) = 43.66, p < .001, r = 0.82
4: -0.5 MTurk C (Intercept) b = 3.24, SE = 0.08, t(981) = 41.75, p < .001, r = 0.80
5: -0.5 MTurk H (Intercept) b = 2.64, SE = 0.06, t(1741) = 46.51, p < .001, r = 0.74
6: 0.5 Lucid L (Intercept) b = 2.89, SE = 0.10, t(590) = 30.14, p < .001, r = 0.78 # binary (mean boundary similar to other studies)
7: -0.5 Lucid G conditionEC b = 0.08, SE = 0.23, t(710) = 0.33, p = .744, r = 0.01
8: -0.5 Lucid P conditionEC b = 0.04, SE = 0.14, t(386) = 0.25, p = .801, r = 0.01
9: -0.5 MTurk B conditionEC b = −0.02, SE = 0.16, t(918) = −0.13, p = .896, r = 0
10: -0.5 MTurk C conditionEC b = −0.10, SE = 0.16, t(981) = −0.67, p = .504, r = −0.02
11: -0.5 MTurk H conditionEC b = −0.13, SE = 0.11, t(1741) = −1.16, p = .247, r = −0.03
12: 0.5 Lucid L conditionEC b = −0.04, SE = 0.19, t(590) = −0.20, p = .838, r = −0.01 # binary
```