- media-bias-fact-check (MBFC) results
- 3216 rated domains
- seems like anything below 60 is actually bad (relative to fact-checker ratings)
![[s20220310_174640.png]]
![[s20220310_175010.png]]
Missing values
```r
# missing values
condition variable n_na N n_na_prop domain_type
3: c mbfc_mean_t1_retweet 1939 16473 0.1177 mbfc
4: t mbfc_mean_t1_retweet 1986 16415 0.1210 mbfc
```
# Basic model
```r
> m1 <- feols(mean_t1 ~ conditionC * mean_t0C | block, dt1[domain_type == "overall"], vcov = "HC1")
> m1
OLS estimation, Dep. Var.: mean_t1
Observations: 32,888
Fixed-effects: block: 5,424
Standard-errors: Heteroskedasticity-robust
Estimate Std. Error t value Pr(>|t|)
conditionC -0.130612 0.095103 -1.373373 0.16965
mean_t0C 0.522977 0.007389 70.782558 < 2.2e-16 ***
conditionC:mean_t0C 0.008265 0.010761 0.768050 0.44246
```
# 3-bin model
```r
# bin means and sizes
> dt1[, .(mean_t0 = mean(mean_t0), n = .N), keyby = .(bin = mean_t0_bin)]
bin mean_t0 n
1: _1 52.73154 10963
2: _2 64.72663 10962
3: _3 77.46787 10963
> m3.1 <- feols(mean_t1 ~ conditionC * mean_t0_bin | block, dt1[domain_type == "overall"], vcov = "HC1")
> m3.1
OLS estimation, Dep. Var.: mean_t1
Observations: 32,888
Fixed-effects: block: 5,424
Standard-errors: Heteroskedasticity-robust
Estimate Std. Error t value Pr(>|t|)
conditionC -0.340247 0.193581 -1.757644 0.078819 .
mean_t0_bin_2 6.290744 0.143933 43.705957 < 2.2e-16 ***
mean_t0_bin_3 13.662622 0.161858 84.411212 < 2.2e-16 ***
conditionC:mean_t0_bin_2 0.522196 0.265948 1.963523 0.049596 *
conditionC:mean_t0_bin_3 0.188127 0.248824 0.756066 0.449616
```
![[dv_mbfc_retweets_oct17-oct24_model_interact_3bins 1.png|700]]
## model comparison
```r
m101 <- feols(mean_t1 ~ conditionC * mean_t0_bin | block, dt1[domain_type == "overall"])
m102 <- feols(mean_t1 ~ mean_t0_bin | block, dt1[domain_type == "overall"])
test_wald(m102, m101)
> test_wald(m102, m101)
Name | Model | df | df_diff | F | p
----------------------------------------------
m102 | fixest | 32886 | | |
m101 | fixest | 32883 | 3.00 | 2.19 | 0.087 # model with condition
# condition effect for each bin
> m201 <- feols(mean_t1 ~ condition * mean_t0_bin | block, dt1[domain_type == "overall"])
> summary(m201, vcov = "HC1")
OLS estimation, Dep. Var.: mean_t1
Observations: 32,888
Fixed-effects: block: 5,424
Standard-errors: Heteroskedasticity-robust
Estimate Std. Error t value Pr(>|t|)
conditiont -0.340247 0.193581 -1.757644 0.078819 . # bin 1
conditiont 0.181949 0.171614 1.06022 0.289054 # bin 2
conditiont -0.152120 0.153334 -0.992078 0.32117 # bin 3
```
# Threshold analysis
- see [[220305_142915 fact-checker threshold analysis]] for explanation
- negative condition effects!
![[dv_mbfc_thresholds_interact 1.png|800]]