- see dave notes [email](https://mail.google.com/mail/u/0/#inbox/FMfcgzGmvTpRTpBjFFHnSXNjcDQfTHQf) ## Raw data summary 676605 obs 16 cols | | NUnique| PercentMissing| Mean| SD| Min| Median| Max| Histogram| |:------------|-------:|--------------:|--------:|-------:|----:|--------:|--------:|----------:| |id | 34286| 0| 17256.59| 9962.41| 1| 17219.00| 34541| ▇▇▇▇▇▇▇▇▇▇| |item_num | 45| 0| 26.74| 13.17| 1| 31.00| 45| ▄▃▄▃▃▃▄▇▆▇| |country | 16| 0| 8.45| 4.60| 1| 8.00| 16| ▆▇▃▇▃▇▃▆▃▇| |rt | 53066| 0| 12.01| 95.91| 0.00| 7.33| 52703.13| ▇| |accimp | 6| 3| 4.17| 1.00| 1| 4.00| 5| ▁▂▅▇| |conservative | 11| 4| 5.22| 2.98| 1| 5.00| 10| ▇▃▄▃▆▄▃▄▂▅| |age | 82| 0| 40.23| 16.04| 18| 38.00| 99| ▇▅▅▄▃▂▂| |gender | 2| 0| 1.49| 0.50| 1| 1.00| 2| ▇▇| |condition | 4| 0| 2.50| 1.12| 1| 2.00| 4| ▇▇▇▇| |crt_acc | 5| 3| 0.62| 0.92| 0| 0.00| 3| ▇▂▁▁| |rating | 6| 0| 0.45| 0.36| 0.00| 0.40| 1.00| ▇▃▃▄▄▄| |female | 2| 0| 0.49| 0.50| 0| 0.00| 1| ▇▇| |college | 3| 4| 0.50| 0.50| 0| 1.00| 1| ▇▇| |real | 2| 0| 0.50| 0.50| 0| 1.00| 1| ▇▇| |perc_acc | 707| 0| 0.44| 0.17| 0.10| 0.43| 0.84| ▂▄▇▆▅▅▆▆▂▁| - 16 countries (treat each country as one "study") - 34286 subjects - all subject ids are unique (no overlaps across studies) - 4 conditions (each country has all four conditions) - condition 1: control/sharing baseline - condition 2: sharing with accuracy nudge - condition 3: accuracy judgments - condition 4: sharing with tips - Dave: so for looking at corr between CRT and truth discernment, you'll want to just look at condition 3 (and if you wanted to replicate the analysis for our under-review paper, youd compare 1 and 2) - trial range: 1 to 20 - `crt_acc`: 0, 1, 2, 3 - `rt`: seconds - `rating`: choice (`[0.0 0.2 0.6 0.8 0.4 1.0]`): to dichotomize around midpoint 0.5 - `perc_acc`: accuracy rating for headline - `accimp`: subject's rating for how important accuracy is - `condition`: condition (1 to 4) | | NUnique| PercentMissing| Mean| SD| Min| Median| Max| Histogram| |:---------|-------:|--------------:|--------:|-------:|---:|--------:|-----:|----------:| |country | 16| 0| 8.45| 4.60| 1| 8.00| 16| ▆▇▃▇▃▇▃▆▃▇| |condition | 4| 0| 2.50| 1.12| 1| 2.00| 4| ▇▇▇▇| |id | 34286| 0| 17261.09| 9961.69| 1| 17251.50| 34541| ▇▇▇▇▇▇▇▇▇▇| |N | 20| 0| 19.73| 1.91| 1| 20.00| 20| ▇| ```r # subjects per condition > dt1[, n_distinct(id), keyby = .(condition)] condition V1 1: 1 8631 2: 2 8548 3: 3 8527 4: 4 8580 # subjects per country country V1 1: 1 2099 2: 2 2115 3: 3 2215 4: 4 2348 5: 5 2124 6: 6 2089 7: 7 2172 8: 8 2105 9: 9 2086 10: 10 2279 11: 11 2257 12: 12 2072 13: 13 1949 14: 14 2108 15: 15 2122 16: 16 2146 # trials > dt1[, .N, keyby = .(country, condition, id)][, summary(N)] Min. 1st Qu. Median Mean 3rd Qu. Max. 1.00 20.00 20.00 19.73 20.00 20.00 # subjects per conditon per country > dt1[, n_distinct(id), keyby = .(condition, country)] condition country V1 1: 1 1 535 2: 1 2 505 3: 1 3 562 4: 1 4 595 5: 1 5 538 6: 1 6 522 7: 1 7 534 8: 1 8 536 9: 1 9 487 10: 1 10 588 11: 1 11 600 12: 1 12 524 13: 1 13 495 14: 1 14 534 15: 1 15 541 16: 1 16 535 17: 2 1 518 18: 2 2 532 19: 2 3 539 20: 2 4 571 21: 2 5 550 22: 2 6 522 23: 2 7 571 24: 2 8 537 25: 2 9 553 26: 2 10 560 27: 2 11 544 28: 2 12 504 29: 2 13 487 30: 2 14 513 31: 2 15 517 32: 2 16 530 33: 3 1 509 34: 3 2 527 35: 3 3 545 36: 3 4 604 37: 3 5 516 38: 3 6 502 39: 3 7 538 40: 3 8 512 41: 3 9 536 42: 3 10 556 43: 3 11 567 44: 3 12 526 45: 3 13 480 46: 3 14 521 47: 3 15 540 48: 3 16 548 49: 4 1 537 50: 4 2 551 51: 4 3 569 52: 4 4 578 53: 4 5 520 54: 4 6 543 55: 4 7 529 56: 4 8 520 57: 4 9 510 58: 4 10 575 59: 4 11 546 60: 4 12 518 61: 4 13 487 62: 4 14 540 63: 4 15 524 64: 4 16 533 condition country V1 ```