- see [[220331_174150 absolute count badness|badness absolute count]], [[220331_183210 fraction bad|fraction badness]]
# parameters
- bad/goodness measures: fc, mbfc (factual, bias, mean(factual, bias), min(factual_bias)), afm (reliable, bias, mean(reliable, bias), min(reliable, bias)) (see [[different measures of domain quality]])
- goodness thresholds: $[5, 10, 15...90, 95]$
- values **below** threshold are set to $100$ (maximum badness)
- values **above** threshold are scaled $[99...0]$ (decreasing badness)
- outcome: **summed** badness (range: $[0, \infty]$)
- winsorize user summed values (both at t1 and t0): $[0.85, 0.90, 0.95, 0.99, 1.00]$ (1.00 = no winsorizing)
- winsorizing applied **before** *filling in missing values with 0*
## bad/goodness threshold examples
![[dv_mbfc_badness_threshold70.png|600]]
![[dv_fc_badness_threshold15.png|600]]
# results
models
- sum badness, **quasipoisson** model: `feglm(t1 ~ conditionC * t0LC | block, dt1, family = "quasipoisson", vcov = "HC1")`
- `conditionC` $[-0.5, 0.5]$
- `t0` time0/pre-campaign badness (not shown because all estimates are highly significant)
- sum badness: `log(t0 + 1)` then mean-centered
- `block` as fixed effect
- red: statistically significant effect (p < .05)
![[winsorize-1.00.png]]
![[winsorize-0.99.png]]
![[winsorize-0.95.png]]
![[winsorize-0.90.png]]
![[winsorize-0.85.png]]