# analysis parameters
- total N: 32888 (pilot campaign)
- only retweets
- 8 days: Oct 17 to Oct 24
- each day has different no. of active users => different no. of users included in analysis
- active: >= 1 tweet on that day; ANY kind of tweet, not limited to tweets with rated domains
- domain rating (9 in total): fc, mbfc_min, mbfc_bias, afm_min etc.
- winsorization: .85, .90, .95, .99, 1.00 (no winsorization)
- outcomes: summed, count, fraction badness
- pre-campaign/time0 value for the outcome (`t0`): Sept 23 to Oct 4 (same as original analysis)
- thresholds: 40-80 (steps of 5)
- standard errors: HC1 or cluster on block
# daily active users from from Oct 17 to Oct 24
31537 users (95.89%) active on those 8 days. About 28k users are active on any given day and these 28k users are included in the analysis for each day. If they didn't retweet anything with rated domains on that day, they are assigned a value of 0 for that day.
```r
# unique active users per day
date n_unique
1: 2021-10-17 28142
2: 2021-10-18 28766
3: 2021-10-19 28798
4: 2021-10-20 28671
5: 2021-10-21 28674
6: 2021-10-22 28420
7: 2021-10-23 27750
8: 2021-10-24 27620
# most users are active every day
total_active_days n_users perc
1: 8 21892 69.42 # 69% of 31537 users are active EVERY DAY
2: 7 3749 11.89
3: 6 1996 6.33
4: 5 1209 3.83
5: 4 900 2.85
6: 3 722 2.29
7: 2 606 1.92
8: 1 463 1.47
```
# models
`t1 ~ condition * t0`
```r
# summed and count badness models
feglm(t1 ~ conditionC * t0LC | block, dt1, family = "quasipoisson") # SEs cluster on block
feglm(t1 ~ conditionC * t0LC | block, dt1, family = "quasipoisson", vcov = "HC1")
# fraction badness models
feols(t1 ~ conditionC * t0LC | block, dt1) # SEs cluster on block
feols(t1 ~ conditionC * t0LC | block, dt1, vcov = "HC1")
```
# results - condition estimate
## distribution of t- and p-values for condition estimate
Analyses aren't independent! But just FYI.
![[_ 7.png]]
% significant effects each day for different outcomes (sorted)
```r
outcome day perc_significant
1: sum 2021-10-22 54.07
2: sum 2021-10-20 45.19
3: sum 2021-10-23 34.32
4: sum 2021-10-21 33.21
5: sum 2021-10-18 32.96
6: sum 2021-10-17 8.77
7: sum 2021-10-19 0.00
8: sum 2021-10-24 0.00
9: count 2021-10-23 32.91
10: count 2021-10-17 23.42
11: count 2021-10-20 21.77
12: count 2021-10-22 21.14
13: count 2021-10-18 17.09
14: count 2021-10-21 14.94
15: count 2021-10-19 0.00
16: count 2021-10-24 0.00
17: frac 2021-10-20 14.56
18: frac 2021-10-23 11.01
19: frac 2021-10-24 5.06
20: frac 2021-10-22 4.43
21: frac 2021-10-21 4.30
22: frac 2021-10-17 2.41
23: frac 2021-10-19 2.28
24: frac 2021-10-18 1.01
outcome day perc_significant
```
## strongest negative effects (treatment group shared less bad stuff)
Top 15, separately for summed, count fraction, summed analyses.
- `outcome`: summed, count, fraction badness
- `dv`: different measures of domain quality/badness
- `estimate`: coefficient
- `statistic`: t-value
- `day`: day of the campaign the analysis was performed on
- `n_users_active`: no. of users of were active on that day
- `n_users_exclude`: no. of users excluded from analysis (because all users in the block have 0 as the outcome value, so the entire block has to be excluded)
```r
outcome dv threshold estimate se p statistic winsorize se_type day n_users_active n_users_exclude
1: sum afm_min 80 -0.061 0.017 0.000 -3.509 0.85 clustblock 2021-10-20 28671 2440
2: sum afm_min 75 -0.060 0.017 0.001 -3.464 0.85 clustblock 2021-10-20 28671 2440
3: sum afm 80 -0.060 0.017 0.001 -3.446 0.85 clustblock 2021-10-20 28671 2440
4: sum afm_bias 80 -0.060 0.018 0.001 -3.386 0.85 clustblock 2021-10-20 28671 2440
5: sum afm_min 70 -0.059 0.017 0.001 -3.379 0.85 clustblock 2021-10-20 28671 2440
6: sum afm_rely 80 -0.058 0.017 0.001 -3.374 0.85 clustblock 2021-10-20 28671 2440
7: sum afm 75 -0.058 0.017 0.001 -3.342 0.85 clustblock 2021-10-20 28671 2440
8: sum afm_bias 75 -0.059 0.018 0.001 -3.334 0.85 clustblock 2021-10-20 28671 2440
9: sum afm_min 80 -0.061 0.018 0.001 -3.326 0.85 hc1 2021-10-20 28671 2440
10: sum afm_min 65 -0.058 0.017 0.001 -3.322 0.85 clustblock 2021-10-20 28671 2440
11: sum afm_min 75 -0.060 0.018 0.001 -3.281 0.85 hc1 2021-10-20 28671 2440
12: sum afm_min 60 -0.058 0.018 0.001 -3.280 0.85 clustblock 2021-10-20 28671 2440
13: sum afm 80 -0.060 0.018 0.001 -3.268 0.85 hc1 2021-10-20 28671 2440
14: sum afm_rely 75 -0.057 0.017 0.001 -3.266 0.85 clustblock 2021-10-20 28671 2440
15: sum afm_bias 70 -0.058 0.018 0.001 -3.252 0.85 clustblock 2021-10-20 28671 2440
16: count fc 55 -0.108 0.036 0.003 -2.987 0.85 clustblock 2021-10-23 27750 9430
17: count fc 65 -0.105 0.036 0.003 -2.967 0.85 clustblock 2021-10-23 27750 9254
18: count fc 70 -0.105 0.036 0.003 -2.967 0.85 clustblock 2021-10-23 27750 9254
19: count mbfc_min 70 -0.048 0.016 0.003 -2.955 0.85 clustblock 2021-10-21 28674 1297
20: count mbfc_min 75 -0.048 0.016 0.003 -2.955 0.85 clustblock 2021-10-21 28674 1297
21: count mbfc_min 80 -0.048 0.016 0.003 -2.955 0.85 clustblock 2021-10-21 28674 1297
22: count afm_min 65 -0.079 0.027 0.003 -2.931 0.90 clustblock 2021-10-23 27750 4953
23: count fc 65 -0.112 0.038 0.003 -2.930 0.90 clustblock 2021-10-23 27750 9254
24: count fc 70 -0.112 0.038 0.003 -2.930 0.90 clustblock 2021-10-23 27750 9254
25: count afm_bias 65 -0.084 0.029 0.004 -2.919 0.90 clustblock 2021-10-23 27750 5427
26: count fc 50 -0.106 0.036 0.004 -2.917 0.85 clustblock 2021-10-23 27750 9443
27: count fc 55 -0.113 0.039 0.004 -2.910 0.90 clustblock 2021-10-23 27750 9430
28: count afm_bias 65 -0.079 0.027 0.004 -2.909 0.85 clustblock 2021-10-23 27750 5427
29: count mbfc_fact 70 -0.046 0.016 0.004 -2.906 0.85 clustblock 2021-10-21 28674 1320
30: count mbfc_fact 75 -0.046 0.016 0.004 -2.906 0.85 clustblock 2021-10-21 28674 1320
31: frac fc 40 -0.001 0.000 0.004 -2.897 0.85 hc1 2021-10-22 28420 13190
32: frac fc 40 -0.001 0.000 0.004 -2.868 0.85 clustblock 2021-10-22 28420 13190
33: frac fc 40 -0.001 0.000 0.004 -2.847 0.90 hc1 2021-10-22 28420 13190
34: frac mbfc 75 -0.002 0.001 0.005 -2.819 0.85 hc1 2021-10-20 28671 1558
35: frac mbfc 80 -0.002 0.001 0.005 -2.819 0.85 hc1 2021-10-20 28671 1558
36: frac fc 40 -0.001 0.000 0.005 -2.796 0.90 clustblock 2021-10-22 28420 13190
37: frac fc 40 -0.001 0.000 0.005 -2.785 0.95 hc1 2021-10-22 28420 13190
38: frac mbfc 75 -0.002 0.001 0.006 -2.771 0.85 clustblock 2021-10-20 28671 1558
39: frac mbfc 80 -0.002 0.001 0.006 -2.771 0.85 clustblock 2021-10-20 28671 1558
40: frac mbfc_min 70 -0.002 0.001 0.006 -2.745 0.85 hc1 2021-10-20 28671 1526
41: frac mbfc_min 75 -0.002 0.001 0.006 -2.745 0.85 hc1 2021-10-20 28671 1526
42: frac mbfc_min 80 -0.002 0.001 0.006 -2.745 0.85 hc1 2021-10-20 28671 1526
43: frac fc 40 -0.001 0.000 0.006 -2.730 0.95 clustblock 2021-10-22 28420 13190
44: frac mbfc_min 70 -0.002 0.001 0.007 -2.701 0.85 clustblock 2021-10-20 28671 1526
45: frac mbfc_min 75 -0.002 0.001 0.007 -2.701 0.85 clustblock 2021-10-20 28671 1526
outcome dv threshold estimate se p statistic winsorize se_type day n_users_active n_users_exclude
```
## strongest positive effects (treatment group shared more bad stuff)
Effects are generally weaker than the negative effects above.
```r
outcome dv threshold estimate se p statistic winsorize se_type day n_users_active n_users_exclude
1: sum fc 40 0.064 0.057 0.263 1.120 1.00 clustblock 2021-10-24 27620 6249
2: sum fc 40 0.064 0.058 0.273 1.096 1.00 hc1 2021-10-24 27620 6249
3: sum fc 45 0.060 0.056 0.284 1.071 1.00 clustblock 2021-10-24 27620 6249
4: sum fc 45 0.060 0.057 0.295 1.047 1.00 hc1 2021-10-24 27620 6249
5: sum fc 50 0.056 0.055 0.311 1.014 1.00 clustblock 2021-10-24 27620 6249
6: sum mbfc_bias 50 0.026 0.026 0.313 1.008 1.00 hc1 2021-10-24 27620 1193
7: sum mbfc_bias 45 0.026 0.026 0.315 1.005 1.00 hc1 2021-10-24 27620 1193
8: sum mbfc_bias 40 0.026 0.026 0.316 1.002 1.00 hc1 2021-10-24 27620 1193
9: sum fc 50 0.056 0.056 0.321 0.992 1.00 hc1 2021-10-24 27620 6249
10: sum mbfc_bias 50 0.026 0.026 0.322 0.990 1.00 clustblock 2021-10-24 27620 1193
11: sum mbfc_bias 45 0.026 0.026 0.324 0.986 1.00 clustblock 2021-10-24 27620 1193
12: sum mbfc_bias 40 0.026 0.026 0.325 0.983 1.00 clustblock 2021-10-24 27620 1193
13: sum mbfc_bias 55 0.024 0.025 0.337 0.961 1.00 hc1 2021-10-24 27620 1193
14: sum fc 40 0.057 0.059 0.339 0.957 1.00 clustblock 2021-10-20 28671 6852
15: sum fc 55 0.052 0.055 0.341 0.953 1.00 clustblock 2021-10-24 27620 6249
16: count afm_rely 40 0.143 0.074 0.052 1.948 1.00 clustblock 2021-10-24 27620 18032
17: count fc 45 0.180 0.093 0.053 1.936 1.00 clustblock 2021-10-24 27620 13746
18: count fc 40 0.209 0.108 0.053 1.933 1.00 clustblock 2021-10-24 27620 15596
19: count fc 40 0.209 0.110 0.058 1.900 1.00 hc1 2021-10-24 27620 15596
20: count fc 45 0.180 0.095 0.058 1.896 1.00 hc1 2021-10-24 27620 13746
21: count afm_rely 40 0.143 0.080 0.074 1.788 1.00 hc1 2021-10-24 27620 18032
22: count afm_rely 40 0.120 0.068 0.077 1.767 0.99 clustblock 2021-10-24 27620 18032
23: count fc 55 0.103 0.059 0.080 1.749 1.00 clustblock 2021-10-24 27620 8413
24: count fc 50 0.102 0.059 0.081 1.744 1.00 clustblock 2021-10-24 27620 8417
25: count fc 60 0.102 0.059 0.083 1.733 1.00 clustblock 2021-10-24 27620 8399
26: count afm_rely 40 0.114 0.067 0.090 1.697 0.99 clustblock 2021-10-23 27750 18157
27: count fc 40 0.104 0.061 0.091 1.691 0.99 clustblock 2021-10-24 27620 15596
28: count fc 55 0.103 0.061 0.094 1.674 1.00 hc1 2021-10-24 27620 8413
29: count fc 50 0.102 0.061 0.095 1.669 1.00 hc1 2021-10-24 27620 8417
30: count fc 60 0.102 0.061 0.097 1.659 1.00 hc1 2021-10-24 27620 8399
31: frac fc 60 0.002 0.001 0.006 2.754 0.99 hc1 2021-10-24 27620 8399
32: frac fc 55 0.002 0.001 0.006 2.750 0.99 hc1 2021-10-24 27620 8413
33: frac fc 50 0.002 0.001 0.006 2.743 0.99 hc1 2021-10-24 27620 8417
34: frac fc 65 0.002 0.001 0.007 2.687 0.99 hc1 2021-10-24 27620 8346
35: frac fc 70 0.002 0.001 0.007 2.687 0.99 hc1 2021-10-24 27620 8346
36: frac fc 60 0.002 0.001 0.008 2.671 0.99 clustblock 2021-10-24 27620 8399
37: frac fc 55 0.002 0.001 0.008 2.667 0.99 clustblock 2021-10-24 27620 8413
38: frac fc 50 0.002 0.001 0.008 2.661 0.99 clustblock 2021-10-24 27620 8417
39: frac fc 65 0.002 0.001 0.009 2.606 0.99 clustblock 2021-10-24 27620 8346
40: frac fc 70 0.002 0.001 0.009 2.606 0.99 clustblock 2021-10-24 27620 8346
41: frac fc 60 0.002 0.001 0.012 2.504 1.00 hc1 2021-10-24 27620 8399
42: frac fc 55 0.002 0.001 0.012 2.501 1.00 hc1 2021-10-24 27620 8413
43: frac fc 50 0.002 0.001 0.013 2.495 1.00 hc1 2021-10-24 27620 8417
44: frac fc 60 0.002 0.001 0.014 2.470 1.00 clustblock 2021-10-24 27620 8399
45: frac fc 55 0.002 0.001 0.014 2.467 1.00 clustblock 2021-10-24 27620 8413
outcome dv threshold estimate se p statistic winsorize se_type day n_users_active n_users_exclude
```
```r
# which outcomes/dvs have the most significant condition effect (p < .05)
> dttemp[p < .05, .N, keyby = .(term, outcome, dv)]
term outcome dv N
1: conditionC sum afm 244
2: conditionC sum afm_bias 222
3: conditionC sum afm_min 258
4: conditionC sum afm_rely 258
5: conditionC sum fc 170
6: conditionC sum mbfc 128
7: conditionC sum mbfc_bias 151
8: conditionC sum mbfc_fact 129
9: conditionC sum mbfc_min 129
10: conditionC count afm 54
11: conditionC count afm_bias 66
12: conditionC count afm_min 117
13: conditionC count afm_rely 99
14: conditionC count fc 106
15: conditionC count mbfc 182
16: conditionC count mbfc_bias 99
17: conditionC count mbfc_fact 156
18: conditionC count mbfc_min 158
19: conditionC frac afm 28
20: conditionC frac afm_bias 48
21: conditionC frac afm_min 53
22: conditionC frac afm_rely 25
23: conditionC frac fc 93
24: conditionC frac mbfc 26
25: conditionC frac mbfc_bias 24
26: conditionC frac mbfc_fact 30
27: conditionC frac mbfc_min 29
term outcome dv N
```
# results - condition-t0 interaction
Weak positive interaction estimates?
![[_ 8.png]]
% significant effects each day for different outcomes (sorted)
```r
outcome day perc_significant
1: sum 2021-10-23 59.38
2: sum 2021-10-21 33.21
3: sum 2021-10-24 5.19
4: sum 2021-10-18 4.20
5: sum 2021-10-17 1.11
6: sum 2021-10-19 0.00
7: sum 2021-10-20 0.00
8: sum 2021-10-22 0.00
9: count 2021-10-23 37.34
10: count 2021-10-17 37.22
11: count 2021-10-21 33.54
12: count 2021-10-20 18.73
13: count 2021-10-24 14.94
14: count 2021-10-18 12.53
15: count 2021-10-22 0.76
16: count 2021-10-19 0.00
17: frac 2021-10-19 14.05
18: frac 2021-10-23 6.96
19: frac 2021-10-24 6.84
20: frac 2021-10-20 6.20
21: frac 2021-10-17 2.78
22: frac 2021-10-18 2.78
23: frac 2021-10-21 1.27
24: frac 2021-10-22 1.14
outcome day perc_significant
```