Have to first reduce/aggregate each subj's data to a single row
- `y` (truth ratings for **false** headlines) for each subject: $\bar{y}_{repeated} - \bar{y}_{novel}$
```r
# causal effect after adjusting for 7 covariates
# INDIA
> average_treatment_effect(cf)
estimate std.err
-0.15580900 0.03798033 # highly significant
# PHiLIPPINES
> average_treatment_effect(cf)
estimate std.err
-0.15493533 0.03140944
```
# forest feature importance
```r
# india
covariate imp
1: conspiracy 0.26493677
2: education 0.18423756
3: age 0.17893590
4: covid_concern 0.14513881
5: aot 0.14160492
6: income 0.06766355
7: gender 0.01748248
# philippines
covariate imp
1: conspiracy 0.29870623
2: age 0.18730596
3: covid_concern 0.17562344
4: aot 0.15462638
5: income 0.12058831
6: education 0.04311698
7: gender 0.02003269
```
# heterogeneous treatment effects (HTE)
There's some evidence for HTE. If area-under-curve(AUC) in the fig below is positive, then there's HTE.
## india
![[s20220912_004234.png]]
## philippines
![[s20220912_004602.png]]
# linear HTE effects
## india
```r
# testing for LINEAR effects!
# INDIA
Best linear projection of the conditional average treatment effect.
Confidence intervals are cluster- and heteroskedasticity-robust (HC3):
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.6935646 0.3676549 1.8865 0.05953 .
age -0.0010886 0.0030696 -0.3546 0.72294
gender -0.0270749 0.0781154 -0.3466 0.72896
education -0.0630834 0.0313840 -2.0100 0.04470 *
income 0.0016427 0.0122013 0.1346 0.89293
aot -0.0438045 0.0394974 -1.1090 0.26768
covid_concern -0.0026335 0.0021951 -1.1997 0.23054
conspiracy -0.0014044 0.0031584 -0.4447 0.65667
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
```
## philippines
```r
Best linear projection of the conditional average treatment effect.
Confidence intervals are cluster- and heteroskedasticity-robust (HC3):
Estimate Std. Error t value Pr(>|t|)
(Intercept) -3.4435e-02 3.3259e-01 -0.1035 0.9176
age -2.1658e-05 2.4380e-03 -0.0089 0.9929
gender 3.2744e-02 6.7428e-02 0.4856 0.6273
education 2.5231e-03 2.4451e-02 0.1032 0.9178
income 1.4234e-03 1.4765e-02 0.0964 0.9232
aot 6.4308e-04 2.8659e-02 0.0224 0.9821
covid_concern -2.0786e-03 1.6346e-03 -1.2716 0.2038
conspiracy -4.5896e-05 2.7823e-03 -0.0165 0.9868
```
## probe non-linear HTE with partial dependence plots
## india
Higher education is associated with smaller treatment effects.
![[1662964988.png]]
## philippines
Higher AOT is associated with weaker treatment effects.
![[1662965257.png]]
![[1662965329.png]]
![[1662965353.png]]
![[1662965384.png]]