# hypothesis 2: only false headlines ```r truth ~ repetitionc * conditiond + (1 + repetitionc | id) + (1 + conditiond | item) # IN term result p_sig 1: b_Intercept b = 4.04 [3.89, 4.19] * 2: b_repetitionc b = 0.11 [0.06, 0.17] * 3: b_conditiond b = -0.34 [-0.48, -0.20] * 4: b_repetitionc:conditiond b = -0.14 [-0.22, -0.07] * # PN term result p_sig 1: b_Intercept b = 3.68 [3.51, 3.86] * 2: b_repetitionc b = 0.12 [0.08, 0.15] * 3: b_conditiond b = -0.48 [-0.61, -0.35] * 4: b_repetitionc:conditiond b = -0.16 [-0.22, -0.11] * form <- formula(truth ~ repetitionc * (conditiond + age + gender + education + income + aot + covid_concern + conspiracy) + (1 + repetitionc | id) + (1 + conditiond | item)) # IN > summ_brms(m2covb) term result p_sig 1: b_Intercept b = 3.84 [3.69, 3.98] * 2: b_repetitionc b = 0.12 [0.07, 0.18] * 3: b_conditiond b = -0.25 [-0.36, -0.13] * 4: b_age b = -0.16 [-0.22, -0.10] * 5: b_gender b = 0.04 [-0.02, 0.10] 6: b_education b = 0.09 [0.03, 0.15] * 7: b_income b = 0.03 [-0.03, 0.08] 8: b_aot b = -0.43 [-0.49, -0.37] * 9: b_covid_concern b = 0.12 [0.07, 0.18] * 10: b_conspiracy b = 0.14 [0.08, 0.20] * 11: b_repetitionc:conditiond b = -0.14 [-0.21, -0.07] * 12: b_repetitionc:age b = 0.03 [-0.01, 0.07] 13: b_repetitionc:gender b = 0.01 [-0.02, 0.05] 14: b_repetitionc:education b = 0.00 [-0.04, 0.04] 15: b_repetitionc:income b = -0.05 [-0.09, -0.01] * 16: b_repetitionc:aot b = -0.03 [-0.07, 0.01] 17: b_repetitionc:covid_concern b = 0.01 [-0.03, 0.05] 18: b_repetitionc:conspiracy b = 0.01 [-0.02, 0.05] # PN > summ_brms(m2covb) term result p_sig 1: b_Intercept b = 3.77 [3.59, 3.94] * 2: b_repetitionc b = 0.13 [0.08, 0.17] * 3: b_conditiond b = -0.47 [-0.58, -0.35] * 4: b_age b = -0.10 [-0.15, -0.05] * 5: b_gender b = 0.08 [0.03, 0.14] * 6: b_education b = -0.07 [-0.12, -0.01] * 7: b_income b = 0.00 [-0.06, 0.06] 8: b_aot b = -0.46 [-0.51, -0.40] * 9: b_covid_concern b = 0.01 [-0.05, 0.06] 10: b_conspiracy b = 0.16 [0.11, 0.22] * 11: b_repetitionc:conditiond b = -0.16 [-0.22, -0.10] * 12: b_repetitionc:age b = 0.00 [-0.03, 0.03] 13: b_repetitionc:gender b = 0.02 [-0.01, 0.05] 14: b_repetitionc:education b = 0.00 [-0.03, 0.03] 15: b_repetitionc:income b = 0.02 [-0.01, 0.05] 16: b_repetitionc:aot b = -0.03 [-0.06, 0.00] * 17: b_repetitionc:covid_concern b = 0.00 [-0.03, 0.03] 18: b_repetitionc:conspiracy b = -0.01 [-0.04, 0.02] form <- formula(truth ~ repetitionc * conditiond * (age + gender + education + income + aot + covid_concern + conspiracy) + (1 + repetitionc | id) + (1 + conditiond | item)) # IN term result p_sig 1: b_Intercept b = 3.84 [3.69, 3.99] * 2: b_repetitionc b = 0.12 [0.06, 0.18] * 3: b_conditiond b = -0.24 [-0.38, -0.11] * 4: b_age b = -0.16 [-0.25, -0.07] * 5: b_gender b = 0.03 [-0.05, 0.11] 6: b_education b = 0.06 [-0.03, 0.15] 7: b_income b = 0.04 [-0.05, 0.12] 8: b_aot b = -0.47 [-0.56, -0.38] * 9: b_covid_concern b = 0.10 [0.02, 0.18] * 10: b_conspiracy b = 0.11 [0.03, 0.20] * 11: b_repetitionc:conditiond b = -0.13 [-0.21, -0.05] * 12: b_repetitionc:age b = 0.04 [-0.02, 0.09] 13: b_repetitionc:gender b = 0.02 [-0.03, 0.07] 14: b_repetitionc:education b = 0.06 [0.00, 0.11] * 15: b_repetitionc:income b = -0.06 [-0.11, -0.01] * 16: b_repetitionc:aot b = 0.01 [-0.05, 0.07] 17: b_repetitionc:covid_concern b = 0.03 [-0.02, 0.08] 18: b_repetitionc:conspiracy b = 0.02 [-0.03, 0.08] 19: b_conditiond:age b = -0.01 [-0.13, 0.11] 20: b_conditiond:gender b = 0.01 [-0.11, 0.13] 21: b_conditiond:education b = 0.06 [-0.06, 0.18] 22: b_conditiond:income b = -0.01 [-0.12, 0.11] 23: b_conditiond:aot b = 0.07 [-0.06, 0.19] 24: b_conditiond:covid_concern b = 0.04 [-0.08, 0.16] 25: b_conditiond:conspiracy b = 0.05 [-0.07, 0.16] 26: b_repetitionc:conditiond:age b = -0.01 [-0.09, 0.07] 27: b_repetitionc:conditiond:gender b = -0.01 [-0.09, 0.06] 28: b_repetitionc:conditiond:education b = -0.10 [-0.18, -0.02] * 29: b_repetitionc:conditiond:income b = 0.01 [-0.06, 0.09] 30: b_repetitionc:conditiond:aot b = -0.06 [-0.14, 0.02] 31: b_repetitionc:conditiond:covid_concern b = -0.05 [-0.12, 0.03] 32: b_repetitionc:conditiond:conspiracy b = -0.02 [-0.09, 0.06] term result p_sig > summ_brms(m2covb_3way) term result p_sig 1: b_Intercept b = 3.75 [3.58, 3.93] * 2: b_repetitionc b = 0.13 [0.08, 0.17] * 3: b_conditiond b = -0.44 [-0.56, -0.31] * 4: b_age b = -0.10 [-0.17, -0.02] * 5: b_gender b = 0.11 [0.04, 0.19] * 6: b_education b = -0.09 [-0.17, -0.01] * 7: b_income b = 0.01 [-0.07, 0.09] 8: b_aot b = -0.45 [-0.53, -0.38] * 9: b_covid_concern b = 0.05 [-0.02, 0.13] 10: b_conspiracy b = 0.20 [0.13, 0.28] * 11: b_repetitionc:conditiond b = -0.16 [-0.22, -0.09] * 12: b_repetitionc:age b = -0.01 [-0.05, 0.03] 13: b_repetitionc:gender b = 0.01 [-0.03, 0.05] 14: b_repetitionc:education b = 0.00 [-0.04, 0.04] 15: b_repetitionc:income b = 0.02 [-0.03, 0.06] 16: b_repetitionc:aot b = -0.03 [-0.08, 0.01] 17: b_repetitionc:covid_concern b = 0.02 [-0.02, 0.06] 18: b_repetitionc:conspiracy b = 0.00 [-0.05, 0.04] 19: b_conditiond:age b = 0.00 [-0.11, 0.10] 20: b_conditiond:gender b = -0.06 [-0.17, 0.04] 21: b_conditiond:education b = 0.03 [-0.08, 0.15] 22: b_conditiond:income b = -0.02 [-0.14, 0.09] 23: b_conditiond:aot b = -0.01 [-0.12, 0.10] 24: b_conditiond:covid_concern b = -0.12 [-0.23, -0.01] * 25: b_conditiond:conspiracy b = -0.09 [-0.19, 0.02] 26: b_repetitionc:conditiond:age b = 0.02 [-0.04, 0.08] 27: b_repetitionc:conditiond:gender b = 0.03 [-0.03, 0.09] 28: b_repetitionc:conditiond:education b = 0.00 [-0.07, 0.06] 29: b_repetitionc:conditiond:income b = 0.00 [-0.06, 0.07] 30: b_repetitionc:conditiond:aot b = 0.00 [-0.06, 0.06] 31: b_repetitionc:conditiond:covid_concern b = -0.06 [-0.12, 0.00] 32: b_repetitionc:conditiond:conspiracy b = -0.01 [-0.07, 0.05] ``` # hypothesis 1: moderation of repetition effect and headline veracity ```r m1b <- brm(truth ~ veracityc * repetitionc + (1 + veracityc * repetitionc | id) + (1 + repetitionc | item), d2c, cores = 8, chains = 8, iter = 2000, warmup = 1000, file = glue("../models-{COUNTRY}/m1b"), backend = "cmdstanr", stan_model_args = list(stanc_options = list("O1")), prior = priors) m1b # IN > summ_brms(m1b) term result p_sig 1: b_Intercept b = 4.18 [4.07, 4.29] * 2: b_veracityc b = 0.28 [0.14, 0.42] * 3: b_repetitionc b = 0.11 [0.07, 0.16] * 4: b_veracityc:repetitionc b = -0.01 [-0.09, 0.07] # PN term result p_sig 1: b_Intercept b = 3.89 [3.78, 4.01] * 2: b_veracityc b = 0.42 [0.23, 0.61] * 3: b_repetitionc b = 0.10 [0.06, 0.14] * 4: b_veracityc:repetitionc b = -0.03 [-0.10, 0.04] form <- formula(truth ~ veracityc * (repetitionc + age + gender + education + income + aot + covid_concern + conspiracy) + (1 + veracityc * repetitionc | id) + (1 + repetitionc | item)) > summ_brms(m1b_cov) term result p_sig 1: b_Intercept b = 4.01 [3.90, 4.11] * 2: b_veracityc b = 0.33 [0.18, 0.47] * 3: b_repetitionc b = 0.11 [0.07, 0.16] * 4: b_age b = -0.13 [-0.21, -0.06] * 5: b_gender b = 0.02 [-0.05, 0.09] 6: b_education b = 0.07 [-0.01, 0.14] 7: b_income b = 0.05 [-0.01, 0.12] 8: b_aot b = -0.37 [-0.45, -0.30] * 9: b_covid_concern b = 0.10 [0.04, 0.17] * 10: b_conspiracy b = 0.14 [0.06, 0.21] * 11: b_veracityc:repetitionc b = -0.01 [-0.09, 0.07] 12: b_veracityc:age b = 0.06 [0.01, 0.10] * 13: b_veracityc:gender b = -0.02 [-0.06, 0.03] 14: b_veracityc:education b = 0.03 [-0.02, 0.08] 15: b_veracityc:income b = 0.03 [-0.01, 0.08] 16: b_veracityc:aot b = 0.17 [0.12, 0.22] * 17: b_veracityc:covid_concern b = 0.01 [-0.03, 0.05] 18: b_veracityc:conspiracy b = 0.04 [-0.01, 0.08] # PN > summ_brms(m1b_cov) term result p_sig 1: b_Intercept b = 3.95 [3.83, 4.07] * 2: b_veracityc b = 0.40 [0.20, 0.60] * 3: b_repetitionc b = 0.10 [0.06, 0.14] * 4: b_age b = -0.09 [-0.15, -0.03] * 5: b_gender b = 0.07 [0.01, 0.13] * 6: b_education b = -0.06 [-0.13, 0.00] 7: b_income b = 0.03 [-0.04, 0.09] 8: b_aot b = -0.33 [-0.40, -0.27] * 9: b_covid_concern b = 0.08 [0.02, 0.14] * 10: b_conspiracy b = 0.16 [0.10, 0.22] * 11: b_veracityc:repetitionc b = -0.03 [-0.10, 0.04] 12: b_veracityc:age b = 0.02 [-0.03, 0.07] 13: b_veracityc:gender b = -0.10 [-0.15, -0.05] * 14: b_veracityc:education b = 0.06 [0.01, 0.11] * 15: b_veracityc:income b = 0.04 [-0.02, 0.09] 16: b_veracityc:aot b = 0.23 [0.18, 0.28] * 17: b_veracityc:covid_concern b = 0.05 [0.00, 0.10] * 18: b_veracityc:conspiracy b = -0.08 [-0.13, -0.03] * form <- formula(truth ~ veracityc * repetitionc * (age + gender + education + income + aot + covid_concern + conspiracy) + (1 + veracityc * repetitionc | id) + (1 + repetitionc | item)) # IN > summ_brms(m1b_full) term result p_sig 1: b_Intercept b = 4.01 [3.90, 4.11] * 2: b_veracityc b = 0.33 [0.19, 0.48] * 3: b_repetitionc b = 0.12 [0.08, 0.17] * 4: b_age b = -0.13 [-0.20, -0.06] * 5: b_gender b = 0.02 [-0.05, 0.09] 6: b_education b = 0.07 [0.00, 0.14] 7: b_income b = 0.05 [-0.01, 0.12] 8: b_aot b = -0.38 [-0.45, -0.30] * 9: b_covid_concern b = 0.10 [0.04, 0.17] * 10: b_conspiracy b = 0.13 [0.06, 0.20] * 11: b_veracityc:repetitionc b = 0.01 [-0.08, 0.10] 12: b_veracityc:age b = 0.05 [0.00, 0.10] * 13: b_veracityc:gender b = -0.02 [-0.07, 0.03] 14: b_veracityc:education b = 0.02 [-0.03, 0.07] 15: b_veracityc:income b = 0.04 [-0.01, 0.08] 16: b_veracityc:aot b = 0.18 [0.13, 0.23] * 17: b_veracityc:covid_concern b = 0.01 [-0.04, 0.05] 18: b_veracityc:conspiracy b = 0.04 [0.00, 0.09] 19: b_repetitionc:age b = 0.02 [-0.02, 0.06] 20: b_repetitionc:gender b = 0.01 [-0.03, 0.04] 21: b_repetitionc:education b = 0.02 [-0.02, 0.06] 22: b_repetitionc:income b = -0.04 [-0.07, 0.00] * 23: b_repetitionc:aot b = 0.02 [-0.02, 0.06] 24: b_repetitionc:covid_concern b = 0.02 [-0.02, 0.05] 25: b_repetitionc:conspiracy b = 0.03 [-0.01, 0.06] 26: b_veracityc:repetitionc:age b = -0.03 [-0.10, 0.04] 27: b_veracityc:repetitionc:gender b = -0.02 [-0.09, 0.04] 28: b_veracityc:repetitionc:education b = -0.06 [-0.13, 0.01] 29: b_veracityc:repetitionc:income b = 0.04 [-0.03, 0.10] 30: b_veracityc:repetitionc:aot b = 0.02 [-0.05, 0.09] 31: b_veracityc:repetitionc:covid_concern b = -0.03 [-0.09, 0.03] 32: b_veracityc:repetitionc:conspiracy b = 0.01 [-0.05, 0.08] term result p_sig # PN > summ_brms(m1b_full) term result p_sig 1: b_Intercept b = 3.95 [3.83, 4.07] * 2: b_veracityc b = 0.40 [0.20, 0.59] * 3: b_repetitionc b = 0.10 [0.06, 0.14] * 4: b_age b = -0.09 [-0.15, -0.03] * 5: b_gender b = 0.07 [0.01, 0.13] * 6: b_education b = -0.06 [-0.13, 0.00] 7: b_income b = 0.03 [-0.04, 0.10] 8: b_aot b = -0.34 [-0.40, -0.27] * 9: b_covid_concern b = 0.08 [0.02, 0.14] * 10: b_conspiracy b = 0.16 [0.10, 0.22] * 11: b_veracityc:repetitionc b = -0.04 [-0.12, 0.03] 12: b_veracityc:age b = 0.02 [-0.03, 0.07] 13: b_veracityc:gender b = -0.09 [-0.14, -0.04] * 14: b_veracityc:education b = 0.06 [0.00, 0.11] * 15: b_veracityc:income b = 0.04 [-0.01, 0.10] 16: b_veracityc:aot b = 0.23 [0.17, 0.28] * 17: b_veracityc:covid_concern b = 0.05 [0.00, 0.10] * 18: b_veracityc:conspiracy b = -0.09 [-0.14, -0.04] * 19: b_repetitionc:age b = -0.01 [-0.04, 0.02] 20: b_repetitionc:gender b = 0.03 [0.00, 0.06] 21: b_repetitionc:education b = -0.02 [-0.05, 0.02] 22: b_repetitionc:income b = 0.02 [-0.01, 0.05] 23: b_repetitionc:aot b = -0.03 [-0.06, 0.00] 24: b_repetitionc:covid_concern b = 0.00 [-0.03, 0.03] 25: b_repetitionc:conspiracy b = -0.01 [-0.05, 0.02] 26: b_veracityc:repetitionc:age b = 0.01 [-0.05, 0.06] 27: b_veracityc:repetitionc:gender b = 0.04 [-0.02, 0.09] 28: b_veracityc:repetitionc:education b = -0.03 [-0.09, 0.02] 29: b_veracityc:repetitionc:income b = 0.01 [-0.05, 0.07] 30: b_veracityc:repetitionc:aot b = 0.01 [-0.05, 0.07] 31: b_veracityc:repetitionc:covid_concern b = -0.04 [-0.09, 0.01] 32: b_veracityc:repetitionc:conspiracy b = -0.02 [-0.07, 0.03] term result p_sig ```