# taskus study 1: initial N = 239
- final n: 199 (83.26%)
# taskus study 2: initial N = 289
```r
completed condition N perc
<int> <char> <int> <num>
1: 0 50 17.30
2: 1 control 134 46.37
3: 1 treatment 105 36.33
```
covariates ~ condition
- only AOT differs between condition
- see also [supplement table 6](https://docs.google.com/document/d/1UWP7SFx_M8P6WMenbVYUeOiBcR6_31duEeArR1gJ_xY/edit)
```r
> feols(c(ageZ, genderZ, aotZ, covidconcernZ, sesZ, attentionZ, educationZ, godZ, hireZ) ~ condition, data = d11)
Standard-errors: IID
Dep. var.: ageZ
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.068970 0.096966 0.711286 0.47762
conditiontreatment -0.011517 0.144754 -0.079564 0.93665
---
Dep. var.: genderZ
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.133870 0.100772 1.32845 0.18567
conditiontreatment -0.212957 0.146505 -1.45358 0.14777
---
Dep. var.: aotZ (maybe because treatment reminds them of accuracy)
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.124831 0.086310 -1.44632 0.1494087
conditiontreatment 0.361456 0.130216 2.77583 0.0059457 **
---
Dep. var.: covidconcernZ
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.037470 0.086967 -0.430852 0.66697
conditiontreatment 0.111966 0.131208 0.853347 0.39433
---
Dep. var.: sesZ
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.094717 0.084101 1.12623 0.26122
conditiontreatment -0.146973 0.126690 -1.16010 0.24719
---
Dep. var.: attentionZ
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.047982 0.089313 -0.537237 0.59164
conditiontreatment 0.104756 0.140902 0.743467 0.45799
---
Dep. var.: educationZ
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.034824 0.088677 -0.392706 0.69489
conditiontreatment 0.004338 0.133865 0.032405 0.97418
---
Dep. var.: godZ
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.038864 0.090648 0.428738 0.66851
conditiontreatment -0.166919 0.136841 -1.219801 0.22376
---
Dep. var.: hireZ
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.05875 0.086011 0.683052 0.49524
conditiontreatment -0.08133 0.129765 -0.626748 0.53143
```
```r
causal forest ATE: b = -0.13 [-0.26, -0.01], p = .014
ATT: b = -0.14 [-0.27, -0.01]
```
# lucid studies
```r
# qualtrics raw: d00
> d00[, n_distinct(id), keyby = .(country)]
Key: <country>
country V1
<char> <int>
1: IN 2949
2: PN 2486
> d00[, n_distinct(id), keyby = .(country, condition)]
Key: <country, condition>
country condition V1
<char> <char> <int>
1: IN control 1467
2: IN treatment 1482
3: PN control 1246
4: PN treatment 1240
# passed 2 bot checks: d01
> d01[, n_distinct(id), keyby = .(country)]
Key: <country>
country V1
<char> <int>
1: IN 1908
2: PN 1795
> d01[, n_distinct(id), keyby = .(country, condition)]
Key: <country, condition>
country condition V1
<char> <char> <int>
1: IN control 958
2: IN treatment 950
3: PN control 892
4: PN treatment 903
# chi-square test for attrition
country statistic p
<char> <num> <num>
1: IN 0.4143326 0.5197786
2: PN 0.4117092 0.5211033
# passed first dogcat screener
> d02[, n_distinct(id), keyby = .(country)]
Key: <country>
country V1
<char> <int>
1: IN 1346
2: PN 1583
> d02[, n_distinct(id), keyby = .(country, condition)]
Key: <country, condition>
country condition V1
<char> <char> <int>
1: IN control 680
2: IN treatment 666
3: PN control 786
4: PN treatment 797
# chi-square test for attrition
country statistic p
<char> <num> <num>
1: IN 0.5383571 0.4631144
2: PN 0.3321915 0.5643715
# passed second screener screener_3
Key: <country>
country V1
<char> <int>
1: IN 1065
2: PN 1300
> d03[, n_distinct(id), keyby = .(country, condition)]
Key: <country, condition>
country condition V1
<char> <char> <int>
1: IN control 548
2: IN treatment 517
3: PN control 660
4: PN treatment 640
# chi-square test for attrition
country statistic p
<char> <num> <num>
1: IN 1.8436618 0.1745224
2: PN 0.4057094 0.5241553
# final completed/reported
> (t11111 <- d2[, n_distinct(id), keyby = .(country)])
Key: <country>
country V1
<char> <int>
1: IN 997
2: PN 1184
> (t22222 <- d2[, n_distinct(id), keyby = .(country, condition)])
Key: <country, condition>
country condition V1
<char> <char> <int>
1: IN control 512
2: IN treatment 485
3: PN control 610
4: PN treatment 574
# chi-square test for attrition
country statistic p
<char> <num> <num>
1: IN 1.462943 0.2264624
2: PN 1.666086 0.1967836
```
Treatment and control group differ on these covariates, only in India
- belief in god (lower in treatment)
- AOT (higher in treatment)
```r
# india
> feols(c(gender, god, age, education, income, covid_concern, conspiracy, aot) ~ condition, data = d3[country == "IN"])
Standard-errors: IID
Dep. var.: gender
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.439453 0.021939 65.612722 < 2.2e-16 ***
conditiontreatment -0.006463 0.031455 -0.205484 0.83724
---
Dep. var.: god
Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.974609 0.079105 88.16955 < 2.2e-16 ***
conditiontreatment -0.261207 0.113417 -2.30307 0.02148 *
---
Dep. var.: age
Estimate Std. Error t value Pr(>|t|)
(Intercept) 35.369141 0.572583 61.771228 < 2.2e-16 ***
conditiontreatment 0.259725 0.820947 0.316373 0.75179
---
Dep. var.: education
Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.275391 0.057919 91.082508 < 2.2e-16 ***
conditiontreatment -0.071267 0.083042 -0.858206 0.39099
---
Dep. var.: income
Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.177734 0.136380 30.633106 < 2.2e-16 ***
conditiontreatment -0.037528 0.195536 -0.191925 0.84784
---
Dep. var.: covid_concern
Estimate Std. Error t value Pr(>|t|)
(Intercept) 83.871094 0.933554 89.840685 < 2.2e-16 ***
conditiontreatment -0.963877 1.338493 -0.720121 0.47162
---
Dep. var.: conspiracy
Estimate Std. Error t value Pr(>|t|)
(Intercept) 77.99238 0.591762 131.79684 < 2.2e-16 ***
conditiontreatment -1.00393 0.848445 -1.18326 0.23699
---
Dep. var.: aot
Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.636719 0.049059 53.74600 < 2.2e-16 ***
conditiontreatment 0.192010 0.070339 2.72979 0.0064494 **
```
```r
# philippines
> feols(c(gender, god, age, education, income, covid_concern, conspiracy, aot) ~ condition, data = d3[country == "PN"])
Standard-errors: IID
Dep. var.: gender
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.513115 0.020258 74.692660 < 2.2e-16 ***
conditiontreatment -0.011373 0.029095 -0.390882 0.69595
---
Dep. var.: god
Estimate Std. Error t value Pr(>|t|)
(Intercept) 7.372131 0.062850 117.297675 < 2.2e-16 ***
conditiontreatment -0.084675 0.090266 -0.938059 0.34841
---
Dep. var.: age
Estimate Std. Error t value Pr(>|t|)
(Intercept) 37.177049 0.557061 66.73784 < 2.2e-16 ***
conditiontreatment 0.073822 0.800060 0.09227 0.9265
---
Dep. var.: education
Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.301639 0.050072 85.90952 < 2.2e-16 ***
conditiontreatment 0.093831 0.071914 1.30477 0.19223
---
Dep. var.: income
Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.872131 0.104869 27.38786 < 2.2e-16 ***
conditiontreatment -0.070737 0.150614 -0.46966 0.63868
---
Dep. var.: covid_concern
Estimate Std. Error t value Pr(>|t|)
(Intercept) 86.79180 0.778064 111.5485 < 2.2e-16 ***
conditiontreatment 2.18555 1.117468 1.9558 0.050723 .
---
Dep. var.: conspiracy
Estimate Std. Error t value Pr(>|t|)
(Intercept) 78.13396 0.535981 145.77751 < 2.2e-16 ***
conditiontreatment 1.15773 0.769785 1.50397 0.13286
---
Dep. var.: aot
Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.323060 0.045072 73.727253 < 2.2e-16 ***
conditiontreatment 0.051911 0.064734 0.801915 0.42276
```
causal forests doubly robust estimates
```r
# india
b = -0.15 [-0.22, -0.08], p < .001
# philippines
b = -0.16 [-0.22, -0.10], p < .001
```
Summary
For the india/philippines experiments on lucid, I'm going to briefly report something similar. Attrition at each stage didn't differ by condition (chi-square tests at all stages of the survey are ps > .175):
- those who passed vs failed initial bot checks (ps for both countries >= .520)
- those who passed the first attention check shown immediately after consent (ps >= .463)
- those who passed the second attention check shown with the questionnaires/surveys (ps >= .175)
- those who completed the exp (ps > .200)
Then tested whether each covariate differed by condition in each country. Only in India did we find differences, and again they're measured post-treatment so could be driven by post-treatment effects:
- belief in god (lower in treatment), p = .021
- AOT (higher in treatment), p = .006
And finally, report causal forests robust ATEs:
- India: b = -0.15 [-0.22, -0.08]
- philippines: b = -0.16 [-0.22, -0.10]