```r
# participants
condition N
<char> <int>
1: catdog 541
2: personality 532
3: policy 519
# vote
vote_bidentrump N
<fctr> <int>
1: harris 909
2: trump 378
3: other 305
# affiliation
pol demrep N
<int> <num> <int>
1: 1 1.0 224
2: 2 1.0 300
3: 3 1.0 356
4: 4 1.5 428
5: 5 2.0 175
6: 6 2.0 73
7: 7 2.0 36
# words typed
condition text1 text2 text_total
<char> <num> <num> <num>
1: catdog 37.15342 38.55453 75.70795
2: personality 43.26692 36.21617 79.48308
3: policy 45.16378 35.42967 80.59345
```
# results
- modeling: condition: catdog (intercept), personality, policy
- suffix `Z`: zscored variable
## main models
- `t2 ~ condition * t1Z` across all participants
```r
> feols(lean_bidentrump_2 ~ condition * lean_bidentrump_1Z, data = d0)
OLS estimation, Dep. Var.: lean_bidentrump_2
Observations: 1,592
Standard-errors: IID
Estimate Std. Error t value Pr(>|t|)
(Intercept) 33.001504 0.314425 104.958198 < 2.2e-16 ***
conditionpersonality -0.017791 0.446738 -0.039825 0.968238
conditionpolicy 0.365570 0.449559 0.813176 0.416239
lean_bidentrump_1Z 38.674578 0.311238 124.260532 < 2.2e-16 ***
conditionpersonality:lean_bidentrump_1Z 0.730377 0.440347 1.658640 0.097386 . # personality treatment made trump voters lean more trump?
conditionpolicy:lean_bidentrump_1Z 0.619888 0.454926 1.362614 0.173198
> feols(vote_chance_2 ~ condition * vote_chance_1Z, data = d0)
OLS estimation, Dep. Var.: vote_chance_2
Observations: 1,592
Standard-errors: IID
Estimate Std. Error t value Pr(>|t|)
(Intercept) 81.738571 0.277147 294.928999 < 2.2e-16 ***
conditionpersonality 0.764023 0.393483 1.941692 0.05235131 .
conditionpolicy 0.083144 0.396092 0.209911 0.83376416
vote_chance_1Z 31.206672 0.270805 115.236540 < 2.2e-16 ***
conditionpersonality:vote_chance_1Z -1.282606 0.387742 -3.307888 0.00096106 *** # less likely to vote after personality treatment for those who were more likely to vote initially?
conditionpolicy:vote_chance_1Z -0.029279 0.398698 -0.073436 0.94146819
# nothing for feeling thermometers
> feols(therm_dem_2 ~ condition * therm_dem_1Z, data = d0)
OLS estimation, Dep. Var.: therm_dem_2
Observations: 1,592
Standard-errors: IID
Estimate Std. Error t value Pr(>|t|)
(Intercept) 59.451735 0.432018 137.614010 < 2.2e-16 ***
conditionpersonality 0.202726 0.614272 0.330026 0.74142
conditionpolicy 0.068248 0.618380 0.110365 0.91213
therm_dem_1Z 26.960998 0.436699 61.738162 < 2.2e-16 ***
conditionpersonality:therm_dem_1Z 0.112780 0.612020 0.184274 0.85382
conditionpolicy:therm_dem_1Z -0.426124 0.624501 -0.682343 0.49512
> feols(therm_repub_2 ~ condition * therm_repub_1Z, data = d0)
OLS estimation, Dep. Var.: therm_repub_2
Observations: 1,592
Standard-errors: IID
Estimate Std. Error t value Pr(>|t|)
(Intercept) 36.389974 0.432912 84.058670 < 2.2e-16 ***
conditionpersonality 0.236108 0.614806 0.384036 0.70100
conditionpolicy 0.859151 0.618639 1.388776 0.16510
therm_repub_1Z 28.289386 0.428861 65.964053 < 2.2e-16 ***
conditionpersonality:therm_repub_1Z -0.846054 0.612769 -1.380706 0.16756
conditionpolicy:therm_repub_1Z 0.551438 0.618451 0.891643 0.37272
```
## difference scores for all four variables
- columns: different variables/outcome variables (difference scores: post minus pre)
- rows: pre-treatment candidate preference (harris, trump, other voters)
![[1722093061.png]]
## cubic interactions
### lean biden/harris vs trump
Same interactions as before, but nothing significant
```r
# outcome: lean
term estimate std.error statistic p.value
<chr> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 0.962 0.444 2.17 0.0303
2 conditionpersonality -0.685 0.639 -1.07 0.284
3 conditionpolicy 0.0357 0.634 0.0563 0.955
4 lean_bidentrump_1 0.732 0.0868 8.43 0
5 I(lean_bidentrump_1^2) 0.00599 0.00244 2.45 0.0142
6 I(lean_bidentrump_1^3) -0.00004 0.00002 -2.20 0.0282
7 conditionpersonality:lean_bidentrump_1 0.0991 0.125 0.795 0.427
8 conditionpolicy:lean_bidentrump_1 -0.138 0.124 -1.11 0.266
9 conditionpersonality:I(lean_bidentrump_1^2) -0.00261 0.00348 -0.751 0.453
10 conditionpolicy:I(lean_bidentrump_1^2) 0.0048 0.00353 1.36 0.174
11 conditionpersonality:I(lean_bidentrump_1^3) 0.00002 0.00002 0.788 0.431
12 conditionpolicy:I(lean_bidentrump_1^3) -0.00003 0.00002 -1.39 0.166
```
![[1722092466.png]]
![[1722264540.png]]
### vote likelihood (interesting results?)
Very significant cubic interaction (see catdog vs personality conditions)
```r
# vote chance/likelihood
term estimate std.error statistic p.value
<chr> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 0.897 1.00 0.896 0.370
2 conditionpersonality 0.791 1.47 0.540 0.589
3 conditionpolicy -0.519 1.50 -0.345 0.730
4 vote_chance_1 0.784 0.107 7.33 0
5 I(vote_chance_1^2) 0.0051 0.00249 2.04 0.0411
6 I(vote_chance_1^3) -0.00003 0.00002 -2.00 0.0461
7 conditionpersonality:vote_chance_1 0.500 0.159 3.15 0.00167
8 conditionpolicy:vote_chance_1 0.0312 0.159 0.196 0.844
9 conditionpersonality:I(vote_chance_1^2) -0.0116 0.00371 -3.14 0.00173
10 conditionpolicy:I(vote_chance_1^2) 0.00016 0.00377 0.0428 0.966
11 conditionpersonality:I(vote_chance_1^3) 0.00007 0.00002 2.89 0.00396 # more cubic for personality treatment
12 conditionpolicy:I(vote_chance_1^3) 0 0.00002 -0.184 0.854
# interact condition also with policy_importance (new question we added), not cubic - just linear terms
> feols(vote_chance_2 ~ condition * (vote_chance_1Z + scale(policy_imp_1)), data = d0)
NOTE: 568 observations removed because of NA values (RHS: 568).
OLS estimation, Dep. Var.: vote_chance_2
Observations: 1,024
Standard-errors: IID
Estimate Std. Error t value Pr(>|t|)
(Intercept) 81.719131 0.338404 241.484239 < 2.2e-16 ***
conditionpersonality 0.627146 0.484079 1.295544 0.1954271
conditionpolicy 0.038081 0.480915 0.079185 0.9369014
vote_chance_1Z 31.084483 0.382712 81.221509 < 2.2e-16 ***
scale(policy_imp_1) 0.055739 0.354198 0.157368 0.8749861
conditionpersonality:vote_chance_1Z -0.455067 0.523469 -0.869329 0.3848727
conditionpolicy:vote_chance_1Z 0.215491 0.534380 0.403254 0.6868466
conditionpersonality:scale(policy_imp_1) -1.498153 0.508399 -2.946807 0.0032841 ** # personality treatment reduced voting likelihood among those who care more about policy
conditionpolicy:scale(policy_imp_1) -0.277280 0.515268 -0.538128 0.5906067
```
![[1722092536.png]]
![[1722264582.png]]
### thermometer democrat
```r
# A tibble: 12 × 5
term estimate std.error statistic p.value
<chr> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 3.45 1.74 1.98 0.0476
2 conditionpersonality 0.256 2.35 0.109 0.914
3 conditionpolicy -1.41 2.51 -0.562 0.574
4 therm_dem_1 0.793 0.144 5.51 0
5 I(therm_dem_1^2) 0.00549 0.00327 1.68 0.0935
6 I(therm_dem_1^3) -0.00004 0.00002 -1.90 0.0571
7 conditionpersonality:therm_dem_1 -0.0146 0.198 -0.0738 0.941
8 conditionpolicy:therm_dem_1 0.257 0.205 1.25 0.211
9 conditionpersonality:I(therm_dem_1^2) 0.00032 0.00456 0.0693 0.945
10 conditionpolicy:I(therm_dem_1^2) -0.00623 0.00464 -1.34 0.179
11 conditionpersonality:I(therm_dem_1^3) 0 0.00003 -0.0567 0.955
12 conditionpolicy:I(therm_dem_1^3) 0.00004 0.00003 1.31 0.189
```
![[1722093400.png]]
![[1722264644.png]]
### thermometer republican
```r
# A tibble: 12 × 5
term estimate std.error statistic p.value
<chr> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 1.17 0.955 1.23 0.219
2 conditionpersonality 3.18 1.44 2.22 0.0268
3 conditionpolicy 0.237 1.40 0.169 0.865
4 therm_repub_1 0.874 0.109 8.00 0
5 I(therm_repub_1^2) 0.00345 0.00294 1.18 0.240
6 I(therm_repub_1^3) -0.00003 0.00002 -1.25 0.212
7 conditionpersonality:therm_repub_1 -0.249 0.158 -1.57 0.116
8 conditionpolicy:therm_repub_1 0.00302 0.156 0.0194 0.985
9 conditionpersonality:I(therm_repub_1^2) 0.00472 0.00422 1.12 0.263
10 conditionpolicy:I(therm_repub_1^2) 0.00053 0.00413 0.129 0.898
11 conditionpersonality:I(therm_repub_1^3) -0.00003 0.00003 -0.889 0.374
12 conditionpolicy:I(therm_repub_1^3) 0 0.00003 -0.144 0.886
```
![[1722093462.png]]
![[1722264682.png]]