```r
# start n: 4557
condition treatment start_n
<char> <char> <int>
1: persuadeHarris llm 1218
2: persuadeHarris video 1000
3: persuadeTrump llm 1259
4: persuadeTrump video 1080
# final n: 3127 (those who already voted don't get counted here)
condition treatment final_n
<char> <char> <num>
1: persuadeHarris llm 715
2: persuadeHarris video 769
3: persuadeTrump llm 801
4: persuadeTrump video 842
# n over time
checkpoint question prepost has_response has_response_perc
<num> <fctr> <char> <num> <num>
1: 0 q00_voted pre-treat 4557 100.00000
2: 1 q01_writescreen pre-treat 3444 75.57604 # 25% of people voted
3: 2 q02_av pre-treat 3297 72.35023
4: 3 q03_age pre-treat 3279 71.95523
5: 4 q04_income pre-treat 3275 71.86746
6: 5 q05_conserv pre-treat 3274 71.84551
7: 6 q06_policy_imp pre-treat 3257 71.47246
8: 7 q07_text1 pre-treat 3241 71.12135
9: 8 q08_text2 pre-treat 3233 70.94580
10: 9 q09_posttreat post-treat 3133 68.75137
11: 10 q10_screener post-treat 3127 68.61971
12: 11 q11_end post-treat 3127 68.61971
```
![[1729792757.png]]
# how many people already voted?
```r
condition treatment question n_voted start_n perc_voted
<char> <char> <fctr> <int> <num> <num>
1: persuadeHarris llm q00_voted 255 1218 20.93596
2: persuadeTrump llm q00_voted 256 1259 20.33360
3: persuadeHarris video q00_voted 227 1000 22.70000
4: persuadeTrump video q00_voted 231 1080 21.38889
```
# among those who made it to the question immediately before treatment
n = 3233 made it to this point.
```r
condition treatment N
<char> <char> <int>
1: persuadeHarris llm 772
2: persuadeHarris video 773
3: persuadeTrump llm 839
4: persuadeTrump video 849
```
differential attrition rate. how many attrited by the end of study
```r
condition treatment attrit_n pre_treat_n attrit_perc
<char> <char> <num> <int> <num>
1: persuadeHarris llm 57 772 7.3834197
2: persuadeHarris video 4 773 0.5174644
3: persuadeTrump llm 38 839 4.5292014
4: persuadeTrump video 7 849 0.8244994
> summ(lm(attrit ~ condition + treatment, data = d11))
term result
<char> <char>
1: (Intercept) b = 0.07 [0.05, 0.08], p < .001
2: conditionpersuadeTrump b = -0.01 [-0.02, 0.00], p = .041
3: treatmentvideo b = -0.05 [-0.06, -0.04], p < .001
> summ(lm(attrit ~ (condition + treatment) * lean_bidentrump_1, data = d11))
term result
<char> <char>
1: (Intercept) b = 0.06 [0.04, 0.08], p < .001
2: conditionpersuadeTrump b = -0.01 [-0.03, 0.01], p = .203
3: treatmentvideo b = -0.05 [-0.07, -0.03], p < .001
4: lean_bidentrump_1 b = 0.00 [0.00, 0.00], p = .306
5: conditionpersuadeTrump × lean_bidentrump_1 b = 0.00 [0.00, 0.00], p = .854
6: treatmentvideo × lean_bidentrump_1 b = 0.00 [0.00, 0.00], p = .851
```
## updated plots/results for these people
![[1729794325.png]]
![[1729794326.png]]