```r
> initial_lean <- "Harris supporter"
> m0 <- feols(vote_chance_2 ~ conditionHarris * scale(vote_chance_1) * scale(topicZ), data = d0[lean == initial_lean])
> summ(m0)
term result
<char> <char>
1: (Intercept) b = 87.82 [87.11, 88.54], p < .001
2: conditionHarrisproHarris b = 2.13 [1.12, 3.14], p < .001
3: scale(vote_chance_1) b = 22.45 [21.77, 23.14], p < .001
4: scale(topicZ) b = -0.03 [-0.74, 0.69], p = .943
5: conditionHarrisproHarris × scale(vote_chance_1) b = -1.76 [-2.77, -0.75], p = .001
6: conditionHarrisproHarris × scale(topicZ) b = 0.16 [-0.85, 1.17], p = .752
7: scale(vote_chance_1) × scale(topicZ) b = 0.34 [-0.35, 1.03], p = .334
8: conditionHarrisproHarris × scale(vote_chance_1) × scale(topicZ) b = -1.39 [-2.40, -0.38], p = .007
```
```r
> initial_lean <- "Trump supporter"
> m0 <- feols(vote_chance_2 ~ condition * scale(vote_chance_1) * scale(topicZ), data = d0[lean == initial_lean])
> summ(m0)
term result
<char> <char>
1: (Intercept) b = 84.63 [83.74, 85.52], p < .001
2: conditionproTrump b = 2.21 [0.93, 3.49], p = .001
3: scale(vote_chance_1) b = 24.94 [24.01, 25.88], p < .001
4: scale(topicZ) b = -0.56 [-1.45, 0.32], p = .214
5: conditionproTrump × scale(vote_chance_1) b = -2.58 [-3.89, -1.28], p < .001
6: conditionproTrump × scale(topicZ) b = 0.74 [-0.54, 2.02], p = .257
7: scale(vote_chance_1) × scale(topicZ) b = 1.05 [0.11, 1.98], p = .028
8: conditionproTrump × scale(vote_chance_1) × scale(topicZ) b = -1.78 [-3.09, -0.48], p = .008
```
binarized for plotting
```r
condition topic pre_vote_likelihood_binary N
<char> <char> <char> <int>
1: Pro-Harris AI Personality <98 218
2: Pro-Harris AI Personality >=98 366
3: Pro-Harris AI Policy <98 213
4: Pro-Harris AI Policy >=98 377
5: Pro-Trump AI Personality <98 208
6: Pro-Trump AI Personality >=98 351
7: Pro-Trump AI Policy <98 207
8: Pro-Trump AI Policy >=98 366
```
![[20241112190952 1.png]]