```r ┌───────────────────────────┬──────────────────────┬──────────────┐ │ modal_fact_checker_rating ┆ llm_opinion_vs_claim ┆ llm_accuracy │ │ --- ┆ --- ┆ --- │ │ str ┆ f64 ┆ f64 │ ╞═══════════════════════════╪══════════════════════╪══════════════╡ │ False/Misleading ┆ 28.793103 ┆ 23.103448 │ │ No Mode ┆ 31.818182 ┆ 25.454545 │ │ Could Not Determine ┆ 50.0 ┆ 47.5 │ │ True ┆ 68.136646 ┆ 65.807453 │ └───────────────────────────┴──────────────────────┴──────────────┘ ``` ```python term result <char> <char> 1: (Intercept) b = 37.88 [33.65, 42.12], p < .001 2: cyl b = -2.88 [-3.53, -2.22], p < .001 ``` ```r term result <char> <char> 1: (Intercept) b = 37.88 [33.65, 42.12], p < .001 2: cyl b = -2.88 [-3.53, -2.22], p < .001 ``` ```r # A tibble: 53,940 × 10 carat cut color clarity depth table price x y z <dbl> <ord> <ord> <ord> <dbl> <dbl> <int> <dbl> <dbl> <dbl> 1 0.23 Ideal E SI2 61.5 55 326 3.95 3.98 2.43 2 0.21 Premium E SI1 59.8 61 326 3.89 3.84 2.31 3 0.23 Good E VS1 56.9 65 327 4.05 4.07 2.31 4 0.29 Premium I VS2 62.4 58 334 4.2 4.23 2.63 5 0.31 Good J SI2 63.3 58 335 4.34 4.35 2.75 6 0.24 Very Good J VVS2 62.8 57 336 3.94 3.96 2.48 7 0.24 Very Good I VVS1 62.3 57 336 3.95 3.98 2.47 8 0.26 Very Good H SI1 61.9 55 337 4.07 4.11 2.53 9 0.22 Fair E VS2 65.1 61 337 3.87 3.78 2.49 10 0.23 Very Good H VS1 59.4 61 338 4 4.05 2.39 ``` ```python # A tibble: 53,940 × 10 carat cut color clarity depth table price x y z <dbl> <ord> <ord> <ord> <dbl> <dbl> <int> <dbl> <dbl> <dbl> 1 0.23 Ideal E SI2 61.5 55 326 3.95 3.98 2.43 2 0.21 Premium E SI1 59.8 61 326 3.89 3.84 2.31 3 0.23 Good E VS1 56.9 65 327 4.05 4.07 2.31 4 0.29 Premium I VS2 62.4 58 334 4.2 4.23 2.63 5 0.31 Good J SI2 63.3 58 335 4.34 4.35 2.75 6 0.24 Very Good J VVS2 62.8 57 336 3.94 3.96 2.48 7 0.24 Very Good I VVS1 62.3 57 336 3.95 3.98 2.47 8 0.26 Very Good H SI1 61.9 55 337 4.07 4.11 2.53 9 0.22 Fair E VS2 65.1 61 337 3.87 3.78 2.49 10 0.23 Very Good H VS1 59.4 61 338 4 4.05 2.39 ```