```r Number of participants: 100 Number of questions: 92 Average number of responses per question: 10.87 ``` ```r skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist 1 idx 0 1 46.9 26.4 1 24.8 47.5 70 92 ▇▇▇▇▇ 2 answer 0 1 2.32 0.893 1 2 2 3 4 ▅▆▁▇▂ 3 realistic 0 1 5.33 1.48 0 4 5 7 7 ▁▁▃▅▇ 4 difficulty 0 1 3.27 1.98 0 2 3 5 7 ▆▃▇▃▃ 5 relate 0 1 4.16 2.11 0 3 4 6 7 ▃▂▇▃▇ ``` choice distributions/responses for each question (`idx` is question id) - looks like many questions have decent entropy ```r # sorted by desc(entropy) idx 1 2 3 4 mu std entropy normalized_entropy chi_square_uniformity <num> <int> <int> <int> <int> <num> <num> <num> <num> <num> 1: 86 3 4 3 2 2.333 1.073 1.959 0.980 0.667 2: 61 2 2 1 3 2.625 1.302 1.906 0.953 1.000 3: 6 5 2 2 2 2.091 1.221 1.859 0.929 2.455 4: 47 1 2 1 3 2.857 1.215 1.842 0.921 1.571 5: 72 1 2 2 4 3.000 1.118 1.837 0.918 2.111 6: 80 2 5 3 1 2.273 0.905 1.790 0.895 3.182 7: 18 1 1 4 3 3.000 1.000 1.753 0.876 3.000 8: 24 1 1 4 3 3.000 1.000 1.753 0.876 3.000 9: 7 4 8 1 4 2.294 1.105 1.735 0.867 5.824 10: 49 3 8 3 1 2.133 0.834 1.673 0.836 7.133 11: 32 1 4 1 1 2.286 0.951 1.664 0.832 3.857 12: 31 3 9 1 3 2.250 1.000 1.623 0.811 9.000 13: 17 1 1 6 3 3.000 0.894 1.617 0.809 6.091 14: 9 4 5 3 0 1.917 0.793 1.555 0.777 4.667 15: 25 3 5 3 0 2.000 0.775 1.539 0.770 4.636 16: 22 1 8 5 1 2.400 0.737 1.533 0.766 9.267 17: 82 0 2 4 2 3.000 0.756 1.500 0.750 4.000 18: 20 3 2 1 0 1.667 0.816 1.459 0.730 3.333 19: 40 0 2 2 5 3.333 0.866 1.436 0.718 5.667 20: 33 2 8 1 1 2.083 0.793 1.418 0.709 11.333 21: 69 3 3 8 0 2.357 0.842 1.414 0.707 9.429 22: 43 1 3 4 0 2.375 0.744 1.406 0.703 5.000 23: 53 0 8 6 2 2.625 0.719 1.406 0.703 10.000 24: 27 8 2 5 0 1.800 0.941 1.400 0.700 9.800 25: 55 1 4 0 2 2.429 1.134 1.379 0.689 5.000 26: 56 1 4 2 0 2.143 0.690 1.379 0.689 5.000 27: 2 1 1 7 1 2.800 0.789 1.357 0.678 10.800 28: 45 5 3 1 0 1.556 0.726 1.352 0.676 6.556 29: 21 5 5 1 0 1.636 0.674 1.349 0.674 7.545 30: 74 5 2 10 0 2.294 0.920 1.333 0.666 13.353 31: 85 1 5 6 0 2.417 0.669 1.325 0.663 8.667 32: 42 1 6 6 0 2.385 0.650 1.314 0.657 9.462 33: 30 6 1 7 0 2.071 0.997 1.296 0.648 10.571 34: 46 5 1 7 0 2.154 0.987 1.296 0.648 10.077 35: 34 1 6 3 0 2.200 0.632 1.295 0.648 8.400 36: 75 2 1 10 1 2.714 0.825 1.292 0.646 16.286 37: 16 1 1 8 1 2.818 0.751 1.278 0.639 13.364 38: 70 1 3 7 0 2.545 0.688 1.241 0.620 10.455 39: 23 5 9 1 0 1.733 0.594 1.231 0.615 13.533 40: 83 2 1 6 0 2.444 0.882 1.224 0.612 9.222 41: 15 2 6 1 0 1.889 0.601 1.224 0.612 9.222 42: 35 1 3 8 0 2.583 0.669 1.189 0.594 12.667 43: 65 3 8 1 0 1.833 0.577 1.189 0.594 12.667 44: 37 1 2 7 0 2.600 0.699 1.157 0.578 11.600 45: 90 2 7 1 0 1.900 0.568 1.157 0.578 11.600 46: 88 5 1 0 1 1.571 1.134 1.149 0.574 8.429 47: 14 1 0 5 1 2.857 0.900 1.149 0.574 8.429 48: 71 1 5 1 0 2.000 0.577 1.149 0.574 8.429 49: 73 1 2 8 0 2.636 0.674 1.096 0.548 14.091 50: 64 1 1 6 0 2.625 0.744 1.061 0.531 11.000 51: 58 2 9 0 1 2.000 0.739 1.041 0.520 16.667 52: 1 3 0 3 0 2.000 1.095 1.000 0.500 6.000 53: 50 1 1 7 0 2.667 0.707 0.986 0.493 13.667 54: 8 3 0 4 0 2.143 1.069 0.985 0.493 7.286 55: 77 8 6 0 0 1.429 0.514 0.985 0.493 14.571 56: 13 4 0 7 0 2.273 1.009 0.946 0.473 12.636 57: 29 0 5 9 0 2.643 0.497 0.940 0.470 16.286 58: 51 1 0 1 8 3.600 0.966 0.922 0.461 16.400 59: 62 1 8 1 0 2.000 0.471 0.922 0.461 16.400 60: 76 1 0 13 2 3.000 0.632 0.868 0.434 27.500 61: 48 1 1 9 0 2.727 0.647 0.866 0.433 19.182 62: 54 1 1 9 0 2.727 0.647 0.866 0.433 19.182 63: 78 0 5 2 0 2.286 0.488 0.863 0.432 9.571 64: 12 3 8 0 0 1.727 0.467 0.845 0.423 15.545 65: 11 1 1 10 0 2.750 0.622 0.817 0.408 22.000 66: 28 1 1 10 0 2.750 0.622 0.817 0.408 22.000 67: 10 2 7 0 0 1.778 0.441 0.764 0.382 14.556 68: 26 0 7 2 0 2.222 0.441 0.764 0.382 14.556 69: 57 0 13 3 0 2.188 0.403 0.696 0.348 28.500 70: 81 1 1 14 0 2.812 0.544 0.669 0.334 33.500 71: 89 2 0 10 0 2.667 0.778 0.650 0.325 22.667 72: 87 0 1 5 0 2.833 0.408 0.650 0.325 11.333 73: 79 0 2 11 0 2.846 0.376 0.619 0.310 25.462 74: 4 0 6 1 0 2.143 0.378 0.592 0.296 14.143 75: 63 0 2 12 0 2.857 0.363 0.592 0.296 28.286 76: 3 13 2 0 0 1.133 0.352 0.567 0.283 31.133 77: 44 1 0 7 0 2.750 0.707 0.544 0.272 17.000 78: 19 1 7 0 0 1.875 0.354 0.544 0.272 17.000 79: 39 0 8 1 0 2.111 0.333 0.503 0.252 19.889 80: 84 1 0 9 0 2.800 0.632 0.469 0.234 22.800 81: 38 1 0 10 0 2.818 0.603 0.439 0.220 25.727 82: 5 1 10 0 0 1.909 0.302 0.439 0.220 25.727 83: 67 1 0 11 0 2.833 0.577 0.414 0.207 28.667 84: 41 1 11 0 0 1.917 0.289 0.414 0.207 28.667 85: 36 9 0 0 0 1.000 0.000 0.000 0.000 27.000 86: 52 0 0 8 0 3.000 0.000 0.000 0.000 24.000 87: 59 0 13 0 0 2.000 0.000 0.000 0.000 39.000 88: 60 0 0 0 12 4.000 0.000 0.000 0.000 36.000 89: 66 0 0 7 0 3.000 0.000 0.000 0.000 21.000 90: 68 12 0 0 0 1.000 0.000 0.000 0.000 36.000 91: 91 14 0 0 0 1.000 0.000 0.000 0.000 42.000 92: 92 10 0 0 0 1.000 0.000 0.000 0.000 30.000 idx 1 2 3 4 mu std entropy normalized_entropy chi_square_uniformity # with histograms if more visually helpful skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist 1 1 94 0.0600 2 1.10 1 1 2 3 3 ▇▁▁▁▇ 2 2 90 0.1 2.8 0.789 1 3 3 3 4 ▁▁▁▇▁ 3 3 85 0.15 1.13 0.352 1 1 1 1 2 ▇▁▁▁▁ 4 4 93 0.0700 2.14 0.378 2 2 2 2 3 ▇▁▁▁▁ 5 5 89 0.11 1.91 0.302 1 2 2 2 2 ▁▁▁▁▇ 6 6 89 0.11 2.09 1.22 1 1 2 3 4 ▇▃▁▃▃ 7 7 83 0.17 2.29 1.10 1 2 2 3 4 ▃▇▁▁▃ 8 8 93 0.0700 2.14 1.07 1 1 3 3 3 ▆▁▁▁▇ 9 9 88 0.12 1.92 0.793 1 1 2 2.25 3 ▆▁▇▁▅ 10 10 91 0.09 1.78 0.441 1 2 2 2 2 ▂▁▁▁▇ 11 11 88 0.12 2.75 0.622 1 3 3 3 3 ▁▁▁▁▇ 12 12 89 0.11 1.73 0.467 1 1.5 2 2 2 ▃▁▁▁▇ 13 13 89 0.11 2.27 1.01 1 1 3 3 3 ▅▁▁▁▇ 14 14 93 0.0700 2.86 0.900 1 3 3 3 4 ▂▁▁▇▂ 15 15 91 0.09 1.89 0.601 1 2 2 2 3 ▂▁▇▁▁ 16 16 89 0.11 2.82 0.751 1 3 3 3 4 ▁▁▁▇▁ 17 17 89 0.11 3 0.894 1 3 3 3.5 4 ▁▁▁▇▃ 18 18 91 0.09 3 1 1 3 3 4 4 ▂▂▁▇▆ 19 19 92 0.0800 1.88 0.354 1 2 2 2 2 ▁▁▁▁▇ 20 20 94 0.0600 1.67 0.816 1 1 1.5 2 3 ▇▁▅▁▂ 21 21 89 0.11 1.64 0.674 1 1 2 2 3 ▇▁▇▁▂ 22 22 85 0.15 2.4 0.737 1 2 2 3 4 ▁▇▁▅▁ 23 23 85 0.15 1.73 0.594 1 1 2 2 3 ▅▁▇▁▁ 24 24 91 0.09 3 1 1 3 3 4 4 ▂▂▁▇▆ 25 25 89 0.11 2 0.775 1 1.5 2 2.5 3 ▅▁▇▁▅ 26 26 91 0.09 2.22 0.441 2 2 2 2 3 ▇▁▁▁▂ 27 27 85 0.15 1.8 0.941 1 1 1 3 3 ▇▁▂▁▅ 28 28 88 0.12 2.75 0.622 1 3 3 3 3 ▁▁▁▁▇ 29 29 86 0.14 2.64 0.497 2 2 3 3 3 ▅▁▁▁▇ 30 30 86 0.14 2.07 0.997 1 1 2.5 3 3 ▇▁▁▁▇ 31 31 84 0.16 2.25 1 1 2 2 2.25 4 ▂▇▁▁▂ 32 32 93 0.0700 2.29 0.951 1 2 2 2.5 4 ▂▇▁▂▂ 33 33 88 0.12 2.08 0.793 1 2 2 2 4 ▂▇▁▁▁ 34 34 90 0.1 2.2 0.632 1 2 2 2.75 3 ▁▁▇▁▃ 35 35 88 0.12 2.58 0.669 1 2 3 3 3 ▁▁▃▁▇ 36 36 91 0.09 1 0 1 1 1 1 1 ▁▁▇▁▁ 37 37 90 0.1 2.6 0.699 1 2.25 3 3 3 ▁▁▂▁▇ 38 38 89 0.11 2.82 0.603 1 3 3 3 3 ▁▁▁▁▇ 39 39 91 0.09 2.11 0.333 2 2 2 2 3 ▇▁▁▁▁ 40 40 91 0.09 3.33 0.866 2 3 4 4 4 ▃▁▃▁▇ 41 41 88 0.12 1.92 0.289 1 2 2 2 2 ▁▁▁▁▇ 42 42 87 0.13 2.38 0.650 1 2 2 3 3 ▁▁▇▁▇ 43 43 92 0.0800 2.38 0.744 1 2 2.5 3 3 ▂▁▆▁▇ 44 44 92 0.0800 2.75 0.707 1 3 3 3 3 ▁▁▁▁▇ 45 45 91 0.09 1.56 0.726 1 1 1 2 3 ▇▁▅▁▂ 46 46 87 0.13 2.15 0.987 1 1 3 3 3 ▆▁▁▁▇ 47 47 93 0.0700 2.86 1.21 1 2 3 4 4 ▂▅▁▂▇ 48 48 89 0.11 2.73 0.647 1 3 3 3 3 ▁▁▁▁▇ 49 49 85 0.15 2.13 0.834 1 2 2 2.5 4 ▃▇▁▃▁ 50 50 91 0.09 2.67 0.707 1 3 3 3 3 ▁▁▁▁▇ 51 51 90 0.1 3.6 0.966 1 4 4 4 4 ▁▁▁▁▇ 52 52 92 0.0800 3 0 3 3 3 3 3 ▁▁▇▁▁ 53 53 84 0.16 2.62 0.719 2 2 2.5 3 4 ▇▁▆▁▂ 54 54 89 0.11 2.73 0.647 1 3 3 3 3 ▁▁▁▁▇ 55 55 93 0.0700 2.43 1.13 1 2 2 3 4 ▂▇▁▁▃ 56 56 93 0.0700 2.14 0.690 1 2 2 2.5 3 ▂▁▇▁▃ 57 57 84 0.16 2.19 0.403 2 2 2 2 3 ▇▁▁▁▂ 58 58 88 0.12 2 0.739 1 2 2 2 4 ▂▇▁▁▁ 59 59 87 0.13 2 0 2 2 2 2 2 ▁▁▇▁▁ 60 60 88 0.12 4 0 4 4 4 4 4 ▁▁▇▁▁ 61 61 92 0.0800 2.62 1.30 1 1.75 2.5 4 4 ▅▅▁▂▇ 62 62 90 0.1 2 0.471 1 2 2 2 3 ▁▁▇▁▁ 63 63 86 0.14 2.86 0.363 2 3 3 3 3 ▁▁▁▁▇ 64 64 92 0.0800 2.62 0.744 1 2.75 3 3 3 ▁▁▁▁▇ 65 65 88 0.12 1.83 0.577 1 1.75 2 2 3 ▃▁▇▁▁ 66 66 93 0.0700 3 0 3 3 3 3 3 ▁▁▇▁▁ 67 67 88 0.12 2.83 0.577 1 3 3 3 3 ▁▁▁▁▇ 68 68 88 0.12 1 0 1 1 1 1 1 ▁▁▇▁▁ 69 69 86 0.14 2.36 0.842 1 2 3 3 3 ▃▁▃▁▇ 70 70 89 0.11 2.55 0.688 1 2 3 3 3 ▁▁▃▁▇ 71 71 93 0.0700 2 0.577 1 2 2 2 3 ▂▁▇▁▂ 72 72 91 0.09 3 1.12 1 2 3 4 4 ▂▃▁▃▇ 73 73 89 0.11 2.64 0.674 1 2.5 3 3 3 ▁▁▂▁▇ 74 74 83 0.17 2.29 0.920 1 1 3 3 3 ▃▁▂▁▇ 75 75 86 0.14 2.71 0.825 1 3 3 3 4 ▂▁▁▇▁ 76 76 84 0.16 3 0.632 1 3 3 3 4 ▁▁▁▇▁ 77 77 86 0.14 1.43 0.514 1 1 1 2 2 ▇▁▁▁▆ 78 78 93 0.0700 2.29 0.488 2 2 2 2.5 3 ▇▁▁▁▃ 79 79 87 0.13 2.85 0.376 2 3 3 3 3 ▂▁▁▁▇ 80 80 89 0.11 2.27 0.905 1 2 2 3 4 ▃▇▁▅▂ 81 81 84 0.16 2.81 0.544 1 3 3 3 3 ▁▁▁▁▇ 82 82 92 0.0800 3 0.756 2 2.75 3 3.25 4 ▃▁▇▁▃ 83 83 91 0.09 2.44 0.882 1 2 3 3 3 ▂▁▁▁▇ 84 84 90 0.1 2.8 0.632 1 3 3 3 3 ▁▁▁▁▇ 85 85 88 0.12 2.42 0.669 1 2 2.5 3 3 ▁▁▇▁▇ 86 86 88 0.12 2.33 1.07 1 1.75 2 3 4 ▆▇▁▆▃ 87 87 94 0.0600 2.83 0.408 2 3 3 3 3 ▂▁▁▁▇ 88 88 93 0.0700 1.57 1.13 1 1 1 1.5 4 ▇▂▁▁▂ 89 89 88 0.12 2.67 0.778 1 3 3 3 3 ▂▁▁▁▇ 90 90 90 0.1 1.9 0.568 1 2 2 2 3 ▂▁▇▁▁ 91 91 86 0.14 1 0 1 1 1 1 1 ▁▁▇▁▁ 92 92 90 0.1 1 0 1 1 1 1 1 ▁▁▇▁▁ skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist 1 1 94 0.0600 2 1.10 1 1 2 3 3 ▇▁▁▁▇ 2 2 90 0.1 2.8 0.789 1 3 3 3 4 ▁▁▁▇▁ 3 3 85 0.15 1.13 0.352 1 1 1 1 2 ▇▁▁▁▁ 4 4 93 0.0700 2.14 0.378 2 2 2 2 3 ▇▁▁▁▁ 5 5 89 0.11 1.91 0.302 1 2 2 2 2 ▁▁▁▁▇ 6 6 89 0.11 2.09 1.22 1 1 2 3 4 ▇▃▁▃▃ 7 7 83 0.17 2.29 1.10 1 2 2 3 4 ▃▇▁▁▃ 8 8 93 0.0700 2.14 1.07 1 1 3 3 3 ▆▁▁▁▇ 9 9 88 0.12 1.92 0.793 1 1 2 2.25 3 ▆▁▇▁▅ 10 10 91 0.09 1.78 0.441 1 2 2 2 2 ▂▁▁▁▇ 11 11 88 0.12 2.75 0.622 1 3 3 3 3 ▁▁▁▁▇ 12 12 89 0.11 1.73 0.467 1 1.5 2 2 2 ▃▁▁▁▇ 13 13 89 0.11 2.27 1.01 1 1 3 3 3 ▅▁▁▁▇ 14 14 93 0.0700 2.86 0.900 1 3 3 3 4 ▂▁▁▇▂ 15 15 91 0.09 1.89 0.601 1 2 2 2 3 ▂▁▇▁▁ 16 16 89 0.11 2.82 0.751 1 3 3 3 4 ▁▁▁▇▁ 17 17 89 0.11 3 0.894 1 3 3 3.5 4 ▁▁▁▇▃ 18 18 91 0.09 3 1 1 3 3 4 4 ▂▂▁▇▆ 19 19 92 0.0800 1.88 0.354 1 2 2 2 2 ▁▁▁▁▇ 20 20 94 0.0600 1.67 0.816 1 1 1.5 2 3 ▇▁▅▁▂ 21 21 89 0.11 1.64 0.674 1 1 2 2 3 ▇▁▇▁▂ 22 22 85 0.15 2.4 0.737 1 2 2 3 4 ▁▇▁▅▁ 23 23 85 0.15 1.73 0.594 1 1 2 2 3 ▅▁▇▁▁ 24 24 91 0.09 3 1 1 3 3 4 4 ▂▂▁▇▆ 25 25 89 0.11 2 0.775 1 1.5 2 2.5 3 ▅▁▇▁▅ 26 26 91 0.09 2.22 0.441 2 2 2 2 3 ▇▁▁▁▂ 27 27 85 0.15 1.8 0.941 1 1 1 3 3 ▇▁▂▁▅ 28 28 88 0.12 2.75 0.622 1 3 3 3 3 ▁▁▁▁▇ 29 29 86 0.14 2.64 0.497 2 2 3 3 3 ▅▁▁▁▇ 30 30 86 0.14 2.07 0.997 1 1 2.5 3 3 ▇▁▁▁▇ 31 31 84 0.16 2.25 1 1 2 2 2.25 4 ▂▇▁▁▂ 32 32 93 0.0700 2.29 0.951 1 2 2 2.5 4 ▂▇▁▂▂ 33 33 88 0.12 2.08 0.793 1 2 2 2 4 ▂▇▁▁▁ 34 34 90 0.1 2.2 0.632 1 2 2 2.75 3 ▁▁▇▁▃ 35 35 88 0.12 2.58 0.669 1 2 3 3 3 ▁▁▃▁▇ 36 36 91 0.09 1 0 1 1 1 1 1 ▁▁▇▁▁ 37 37 90 0.1 2.6 0.699 1 2.25 3 3 3 ▁▁▂▁▇ 38 38 89 0.11 2.82 0.603 1 3 3 3 3 ▁▁▁▁▇ 39 39 91 0.09 2.11 0.333 2 2 2 2 3 ▇▁▁▁▁ 40 40 91 0.09 3.33 0.866 2 3 4 4 4 ▃▁▃▁▇ 41 41 88 0.12 1.92 0.289 1 2 2 2 2 ▁▁▁▁▇ 42 42 87 0.13 2.38 0.650 1 2 2 3 3 ▁▁▇▁▇ 43 43 92 0.0800 2.38 0.744 1 2 2.5 3 3 ▂▁▆▁▇ 44 44 92 0.0800 2.75 0.707 1 3 3 3 3 ▁▁▁▁▇ 45 45 91 0.09 1.56 0.726 1 1 1 2 3 ▇▁▅▁▂ 46 46 87 0.13 2.15 0.987 1 1 3 3 3 ▆▁▁▁▇ 47 47 93 0.0700 2.86 1.21 1 2 3 4 4 ▂▅▁▂▇ 48 48 89 0.11 2.73 0.647 1 3 3 3 3 ▁▁▁▁▇ 49 49 85 0.15 2.13 0.834 1 2 2 2.5 4 ▃▇▁▃▁ 50 50 91 0.09 2.67 0.707 1 3 3 3 3 ▁▁▁▁▇ 51 51 90 0.1 3.6 0.966 1 4 4 4 4 ▁▁▁▁▇ 52 52 92 0.0800 3 0 3 3 3 3 3 ▁▁▇▁▁ 53 53 84 0.16 2.62 0.719 2 2 2.5 3 4 ▇▁▆▁▂ 54 54 89 0.11 2.73 0.647 1 3 3 3 3 ▁▁▁▁▇ 55 55 93 0.0700 2.43 1.13 1 2 2 3 4 ▂▇▁▁▃ 56 56 93 0.0700 2.14 0.690 1 2 2 2.5 3 ▂▁▇▁▃ 57 57 84 0.16 2.19 0.403 2 2 2 2 3 ▇▁▁▁▂ 58 58 88 0.12 2 0.739 1 2 2 2 4 ▂▇▁▁▁ 59 59 87 0.13 2 0 2 2 2 2 2 ▁▁▇▁▁ 60 60 88 0.12 4 0 4 4 4 4 4 ▁▁▇▁▁ 61 61 92 0.0800 2.62 1.30 1 1.75 2.5 4 4 ▅▅▁▂▇ 62 62 90 0.1 2 0.471 1 2 2 2 3 ▁▁▇▁▁ 63 63 86 0.14 2.86 0.363 2 3 3 3 3 ▁▁▁▁▇ 64 64 92 0.0800 2.62 0.744 1 2.75 3 3 3 ▁▁▁▁▇ 65 65 88 0.12 1.83 0.577 1 1.75 2 2 3 ▃▁▇▁▁ 66 66 93 0.0700 3 0 3 3 3 3 3 ▁▁▇▁▁ 67 67 88 0.12 2.83 0.577 1 3 3 3 3 ▁▁▁▁▇ 68 68 88 0.12 1 0 1 1 1 1 1 ▁▁▇▁▁ 69 69 86 0.14 2.36 0.842 1 2 3 3 3 ▃▁▃▁▇ 70 70 89 0.11 2.55 0.688 1 2 3 3 3 ▁▁▃▁▇ 71 71 93 0.0700 2 0.577 1 2 2 2 3 ▂▁▇▁▂ 72 72 91 0.09 3 1.12 1 2 3 4 4 ▂▃▁▃▇ 73 73 89 0.11 2.64 0.674 1 2.5 3 3 3 ▁▁▂▁▇ 74 74 83 0.17 2.29 0.920 1 1 3 3 3 ▃▁▂▁▇ 75 75 86 0.14 2.71 0.825 1 3 3 3 4 ▂▁▁▇▁ 76 76 84 0.16 3 0.632 1 3 3 3 4 ▁▁▁▇▁ 77 77 86 0.14 1.43 0.514 1 1 1 2 2 ▇▁▁▁▆ 78 78 93 0.0700 2.29 0.488 2 2 2 2.5 3 ▇▁▁▁▃ 79 79 87 0.13 2.85 0.376 2 3 3 3 3 ▂▁▁▁▇ 80 80 89 0.11 2.27 0.905 1 2 2 3 4 ▃▇▁▅▂ 81 81 84 0.16 2.81 0.544 1 3 3 3 3 ▁▁▁▁▇ 82 82 92 0.0800 3 0.756 2 2.75 3 3.25 4 ▃▁▇▁▃ 83 83 91 0.09 2.44 0.882 1 2 3 3 3 ▂▁▁▁▇ 84 84 90 0.1 2.8 0.632 1 3 3 3 3 ▁▁▁▁▇ 85 85 88 0.12 2.42 0.669 1 2 2.5 3 3 ▁▁▇▁▇ 86 86 88 0.12 2.33 1.07 1 1.75 2 3 4 ▆▇▁▆▃ 87 87 94 0.0600 2.83 0.408 2 3 3 3 3 ▂▁▁▁▇ 88 88 93 0.0700 1.57 1.13 1 1 1 1.5 4 ▇▂▁▁▂ 89 89 88 0.12 2.67 0.778 1 3 3 3 3 ▂▁▁▁▇ 90 90 90 0.1 1.9 0.568 1 2 2 2 3 ▂▁▇▁▁ 91 91 86 0.14 1 0 1 1 1 1 1 ▁▁▇▁▁ 92 92 90 0.1 1 0 1 1 1 1 1 ▁▁▇▁▁ ```