- [[expected value|expectation]]
# Idea
Properties of [[covariance]].
## Constants cannot covary
$
\operatorname{Cov}(X, c)=0
$
```r
x <- rnorm(100)
constant <- rep(5, 100) # constant 5
cov(x, constant) # = 0
```
## Variance is a covariance of a variable with itself
The variance of $X$ is the covariance of $X$ with itself:
$
\operatorname{Var}(X)=E\left(D_X^2\right)=E\left(D_X D_X\right)=\operatorname{Cov}(X, X)
$
where $D$ is deviance.
```r
x <- rnorm(5)
var(x) == cov(x, x)
```
## Covariance is symmetric
$
\operatorname{Cov}(Y, X)=\operatorname{Cov}(X, Y)
$
```r
x <- rnorm(5)
y <- rnorm(5)
cov(x, y) == cov(y, x)
```
## Distributive or addition rule
$Cov(X + Y, Z) = Cov(X, Z) + Cov(Y, Z)$
$Cov(X, Y+Z) = Cov(X, Y) + Cov(X, Z)$
```r
x <- rnorm(10)
y <- rnorm(10)
z <- rnorm(10)
cov(x + y, z)
cov(x, z) + cov(y, z)
```
### Examples
Let $x$ and $y$ be independent and suppose $Var(x) = 10$. Find $cov(x, x+y)$.
$cov(x, x+y) = cov(x, x) + cov(x,y)$
$cov(x, x+y) = var(x) + cov(x,y)$
$cov(x, x+y) = 10 + cov(x,y)$
$cov(x, x+y) = 10 + 0$
$cov(x,y) = 0$ because $x$ and $y$ are independent.
## Bilinearity
$
\operatorname{Cov}(a X, b Y)=a b \operatorname{Cov}(X, Y)
$
$
\operatorname{Cov}(a X+b Y, c Z)=a c \operatorname{Cov}(X, Z)+b c \operatorname{Cov}(Y, Z)
$
```r
cov(2 * x, 3 * y)
cov(x, y) * 2 * 3
cov(2 * x + 3 * y, 4 * z)
(cov(x, z) * 2 * 4) + (cov(y, z) * 3 * 4)
```
## Examples
$
\operatorname{Cov}(10 X-Y, 3 Y+Z)=30 \operatorname{Cov}(X, Y)+10 \operatorname{Cov}(X, Z)-3 \operatorname{Cov}(Y, Y)-\operatorname{Cov}(Y, Z)
$
# References
- [13.2. Properties of Covariance — Data 140 Textbook](http://prob140.org/textbook/content/Chapter_13/02_Properties_of_Covariance.html)
- [Lesson 30 Properties of Covariance | Introduction to Probability](https://dlsun.github.io/probability/cov-properties.html)