- [[derivative - logarithmic functions]]
# Idea
Take the exponential function:
$
f(x)=a^{x}
$
Its derivative is the function itself, $a^x$ multiplied by the derivative of the power, $x$, and natural log of the base, $ln(a)$:
$f^{\prime}(x)=a^{x} x^\prime \ln (a) $
Note the special case:
$ f(x)=e^{x} $
$f^{\prime}(x)=e^{x} x^\prime \ln (e)$
$f^{\prime}(x)=e^{x} x^0 \ln(e)$
$f^{\prime}(x)=e^{x}$
because $ln(e) = 1$.
## Example 1
$ y=4^{3 x^{2}} $
$y^\prime = 4^{3x^2} (3x^2)^\prime \ln(4)$
$y^\prime = 4^{3x^2} 6x \ln(4)$
## Example 2
$y = 2^x e^x$
$y\prime = 2^x ln(2)e^x + 2^xe^x ln(e)$
$y\prime = 2^x ln(2)e^x + 2^xe^x$
$y\prime = 2^x e^x (ln(2) + 1)$
Apply [[product rule]] here.
# References
- [Derivatives of Exponential Functions - YouTube](https://www.youtube.com/watch?v=yg_497u6JnA)
- [Derivatives of Exponential Functions](https://math24.net/derivatives-exponential-functions.html)
- [Differentiation of Exponential Functions](https://www.analyzemath.com/calculus/Differentiation/exponential.html)
- [Derivative of Exponential Function - Formula, Proof, Examples](https://www.cuemath.com/calculus/derivative-of-exponential-function/)