Rescaled all ratings to range $[0, 1]$: higher = higher quality domain
- independent fact-checkers (60) `fc`
- NewsGuard (207) `ng`: www.newsguardtech.com
- Media Bias/Fact Check (3216): www.mediabiasfactcheck.com
- factual score `mbfc_fact`
- bias score `mbfc_bias` (higher = higher quality, less bias)
- `mbfc`: `mean(mbfc_fact, mbfc_bias)`
- `mbfc_min`: `min(mbfc_fact, mbfc_bias)`
- Ad Fontes Media (283): www.adfontesmedia.com
- reliability (factual) score `afm_rely`
- bias score `afm_bias` (higher = higher quality, less bias)
- `afm`: `mean(afm_rely, afm_bias)`
- `afm_min`: `min(afm_rely, afm_bias)`
- Iffy unreliable sources index (471) `misinfome`: www.iffy.news
- [google sheet](https://docs.google.com/spreadsheets/d/1ck1_FZC-97uDLIlvRJDTrGqBk0FuDe9yHkluROgpGS8/edit#gid=1144285784)
- credible: mean ratings across urls to get mean domain rating
- https://www.isthiscredible.com
![[Pasted image 20220302185310.png]]
# Correlations
```python
# quality01
cols = ["ng", "fc", "misinfome", "afm", "mbfc"] # fact + bias combined
w = np.array([0.220, 0.280, 0.080, 0.220, 0.200])
```
## quality01
![[Pasted image 20211101170907.png]]
## quality02
```python
# quality02
cols = ["ng", "fc", "misinfome", "afm", "mbfc"] # fact + bias combined
w = np.array([0.050, 0.800, 0.040, 0.060, 0.050])
```
![[Pasted image 20211101171022.png]]
## quality03
```python
# quality03
cols = ["ng", "fc", "misinfome", "afm_min", "mbfc_min"]
w = np.array([0.220, 0.280, 0.080, 0.220, 0.200])
```
![[Pasted image 20211101172359.png]]
## quality04
```python
# quality04
min(["ng", "fc", "mbfc_fact", "mbfc_bias", "afm_bias", "afm_rely"])
```
![[Pasted image 20211116230211.png]]
## quality05
```python
# quality05
# separate into 4 groups based on cutoffs: 0.25, 0.5, 0.75, 1.0
# for ["ng", "fc", "mbfc_fact", "afm_rely"], recode as such:
# from: [0, 0.25), [0.25, 0.5), [0.5, 0.75), [0.75, 1.00]
# to: [0.125, 0.375, 0.625, 0.875]
mean(["ng", "fc", "mbfc_fact", "afm_rely"]) # of newly recoded columns
```
![[Pasted image 20211118135122.png|00]]
## quality06 (consistent top/bottom quartiles)
```python
# quality06 (uses bins in quality05)
# Divided each measure into quartiles and checked for consistency across measures.
# Then selected top/bottom quantiles. Gord selected/binarized bad/good domains.
```
![[Pasted image 20211118170632.png|500]]
## quality07 (3332)
```python
# quality07
cols = ["ng", "fc", "afm_rely", "mbfc_fact"]
w = np.ones(len(cols)) / len(cols)
```
![[Pasted image 20220302185907.png]]
## quality08 (3332)
```python
# quality08
# all misinfome domains assigned 0, regardless of other ratings
cols = ["ng", "fc", "afm_rely", "mbfc_fact", "mbfc_bias", "afm_bias", "misinfome"]
w = np.ones(len(cols)) / len(cols)
```
![[Pasted image 20220302191205.png]]