- [[good tutorials]], [[learning log]]
# Bayesian statistics and modeling
- [Bayesian Statistics and Hierarchical Bayesian Modeling for Psychological Science](https://github.com/lei-zhang/BayesCog_Wien)
- by Lei Zhang; uses [[R language|R]], intro to [[Stan]], [[Markov chain Monte Carlo|MCMC]]
- [An Introduction to Bayesian Data Analysis for Cognitive Science](https://vasishth.github.io/bayescogsci/book/)
- by [[Shravan Vasishth]]
# Causal inference and experimental design
- [A Crash Course in Causality: Inferring Causal Effects from Observational Data | Coursera](https://www.coursera.org/learn/crash-course-in-causality)
- by [[Jason Roy]]
- [Causal Inference for The Brave and True](https://matheusfacure.github.io/python-causality-handbook/landing-page.html)
- by [[Matheus Facure Alves]]
- [Data science for economics (covers advanced topics like double machine learning and GRF)](https://madina-k.github.io/dse_mk2021/landing-page.html)
- by [[Madina Kurmangaliyeva]]
- [Stanford Stat 263/363: Experimental Design](https://statweb.stanford.edu/~owen/courses/363/)
- by Art B. Owen, recommended by [[Dean Eckles]]
- Dean's recommendations
- Angrist & Pischke, Imbens & Rubin, Gerber & Green's Field Experiments
- Morgan & Winship are the usual ones I suggest
- Scott Cunningham's book is also good for going a bit deeper on applying some particular techniques.
- [The Effect: An Introduction to Research Design and Causality | The Effect](https://theeffectbook.net/index.html)
# Causal forests and trees
- [Estimation of Heterogeneous Treatment Effects](https://gsbdbi.github.io/ml_tutorial/hte_tutorial/hte_tutorial.html#hte_2:_causal_forests_and_the_r-learner)
# Computer science
- [Coursera Mathematical Thinking in Computer Science](https://www.coursera.org/learn/what-is-a-proof)
# Deep learning
- [Introduction to Deep Learning — STAT 157, Spring 19 documentation](https://c.d2l.ai/berkeley-stat-157/index.html)
- [Dive into Deep Learning — Dive into Deep Learning 0.17.2 documentation](https://d2l.ai/index.html)
# Linear algebra
- MIT18.06 linear algebra by [[Gilbert Strang]]
- [Gilbert Strang lectures on Linear Algebra (MIT) - YouTube](https://www.youtube.com/playlist?list=PL49CF3715CB9EF31D)
- [Linear Algebra lemma course](https://www.lem.ma/books/AIApowDnjlDDQrp-uOZVow/landing)
- [[Strang 2016 intro to linear algebra]]
- [[Savov no bullshit guide to linear algebra]]
- [[Boyd intro to applied linear algebra]]
- [The-Art-of-Linear-Algebra/The-Art-of-Linear-Algebra.pdf at main · kenjihiranabe/The-Art-of-Linear-Algebra · GitHub](https://github.com/kenjihiranabe/The-Art-of-Linear-Algebra/blob/main/The-Art-of-Linear-Algebra.pdf)
# Machine learning
- [DataCamp: Linear Classifiers in Python](https://learn.datacamp.com/courses/linear-classifiers-in-python)
- by Mike Gilbert
# Mixed-effects/hierarchical/multi-level modeling
-
# Natural language processing
- [ML book](https://book.mlcompendium.com/)
- [Stanford CS124 From Languages to Information - youtube](https://www.youtube.com/channel/UC_48v322owNVtORXuMeRmpA/playlists)
- [CS124 - From Languages to Information (Fall 2021)](https://web.stanford.edu/class/cs124/)
- [[Jurafsky speech and language processing]]
- [NLTK Book](https://www.nltk.org/book/)
- [Info 256. Applied Natural Language Processing](https://people.ischool.berkeley.edu/~dbamman/info256.html)
- [Codecademy resources](https://www.codecademy.com/paths/natural-language-processing/tracks/nlp-welcome-to-the-natural-language-processing-skill-path/modules/welcome-to-the-natural-language-processing-skill-path/informationals/nlp-intro-helpful-resources)
- [Working With Text Data — scikit-learn 1.0.1 documentation](https://scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.html)
# Probability
- Harvard Stat101 by [[Joseph Blitzstein]]
- [Introduction to Probability | edX](https://www.edx.org/course/introduction-to-probability)
- [Statistics 110: Probability - YouTube](https://www.youtube.com/playlist?list=PL2SOU6wwxB0uwwH80KTQ6ht66KWxbzTIo)
- [[Blitzstein 2019 intro to probability]]
- [Statistics 110: Probability](https://projects.iq.harvard.edu/stat110/home)
- MIT6-012 Intro to Probability
- [MIT RES.6-012 Introduction to Probability, Spring 2018 - YouTube](https://www.youtube.com/playlist?list=PLUl4u3cNGP60hI9ATjSFgLZpbNJ7myAg6)
- [Introduction to Probability | Supplemental Resources | MIT OpenCourseWare](https://ocw.mit.edu/courses/res-6-012-introduction-to-probability-spring-2018/)
- MIT18.05 Intro to probability and statistics
- [Probability and statistics-MIT - YouTube](https://www.youtube.com/playlist?list=PLl8XY7QVSa4aUyZAtL2Hlf_mx3LaSix9B)
- [Introduction to Probability and Statistics | Mathematics | MIT OpenCourseWare](https://ocw.mit.edu/courses/18-05-introduction-to-probability-and-statistics-spring-2014/)
- [[Casella 2022 statistical inference]]
# Python
- [DataCamp Python Object Oriented Programming](https://campus.datacamp.com/courses/object-oriented-programming-in-python/oop-fundamentals?ex=1)
- [RealPython REST API](https://realpython.com/api-integration-in-python/?utm_source=notification_summary&utm_medium=email&utm_campaign=2021-07-28)
- [RealPython collections](https://realpython.com/python-collections-module/?__s=f2xcdrkjqht99p741s74)
## pandas
- [Real Python pandas](https://realpython.com/lessons/modifying-values-labels-indices/)
# Computational social science
- [Courses that use Bit by Bit](https://www.bitbybitbook.com/en/teaching/)
- [CSC2552 Topics in Computational Social Science: AI, Data, and Society Syllabus](https://www.cs.toronto.edu/~ashton/csc2552/)
- by Ashton Anderson
# R
- [ggplot2: Elegant Graphics for Data Analysis](https://ggplot2-book.org/index.html)
- by [[Hadley Wickham]], Danielle Navarro, Thomas Lin Pedersen
- [R for Data Science](https://r4ds.had.co.nz/)
- by [[Hadley Wickham]]
# Web development
- [Svelte Tutorial for Beginners by Net Ninja - YouTube](https://www.youtube.com/playlist?list=PL4cUxeGkcC9hlbrVO_2QFVqVPhlZmz7tO)
# Others
- [Generalized Additive Models in R · A Free Interactive Course](https://noamross.github.io/gams-in-r-course/)
---
# Courses
- [Coursera Computational Social Science Specialization](https://www.coursera.org/specializations/computational-social-science-ucdavis)
- [Codecademy Fundamental Math for Data Science](https://www.codecademy.com/learn/paths/fundamental-math-for-data-science)
- [Codecademy Exploratory Data Analysis Python](https://www.codecademy.com/learn/eda-exploratory-data-analysis-python)
- [Machine Learning for Healthcare | Electrical Engineering and Computer Science | MIT OpenCourseWare](https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-s897-machine-learning-for-healthcare-spring-2019/)
- causal inference
---
# Courses to organize
- Mike's courses