- [[linear combination of rows]], [[linear combinations]], [[linear regression closed-form matrix solution]] # Idea Multiply a matrix $A$ with a column vector $x$ is equivalent to taking the linear combination of the columns of $A$, or the [[dot product]] between the rows of $A$ and columns of $x$. This operation is a **column operation**. A matrix times a column gives us a column. ![[s20220725_010905.png]] ![[s20220725_011218.png]] ## Example 1 If we post-multiply a matrix $A$ with the **column vector** $x$, we're computing the linear combination of the columns in matrix $A$. $Ax= b$ $ \left[\begin{array}{cc} 2 & -1 \\ -1 & 2 \end{array}\right]\left[\begin{array}{l} x \\ y \end{array}\right]=\left[\begin{array}{l} 0 \\ 3 \end{array}\right] $ $ x\left[\begin{array}{c} 2 \\ -1 \end{array}\right]+y\left[\begin{array}{c} -1 \\ 2 \end{array}\right]=\left[\begin{array}{l} 0 \\ 3 \end{array}\right] $ The elements in vector/matrix $x$ are [[scalars]]. They linearly scale the columns in matrix $A$. ![[s20220725_012954.png]] ![[s20220725_005743.png]] # References - [Lec 1 | MIT 18.06 Linear Algebra, Spring 2005 - YouTube](https://youtu.be/ZK3O402wf1c?t=565) - [3Blue1Brown - Matrix multiplication as composition](https://www.3blue1brown.com/lessons/matrix-multiplication) - [3Blue1Brown - Matrix multiplication as composition](https://www.3blue1brown.com/lessons/matrix-multiplication#title) - [2. Elimination with Matrices. - YouTube](https://youtu.be/QVKj3LADCnA?t=1290)